Suppr超能文献

还原消除导致金(III)配合物中 C-C 键的形成:一种机理和计算研究。

Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.

机构信息

School of Chemistry, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK.

Department of Chemistry, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.

出版信息

Chemistry. 2018 Jun 21;24(35):8893-8903. doi: 10.1002/chem.201801277. Epub 2018 Jun 1.

Abstract

The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C F , CH=CMe , Me and p-C H X, where X=OMe, F, H, tBu, Cl, CF , or NO ) as starting materials (C^N^C=2,6-(4'-tBuC H ) pyridine dianion). Protodeauration followed by addition of one equivalent SMe leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe )] . Upon addition of a second SMe pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C F )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10  L mol  s at 221 K, whereas both C F and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) in place of SMe greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp )-C(sp ) elimination from three-coordinate ions [(Ar )(Ar )AuL] is almost barrier-free, particularly if L=phosphine.

摘要

研究了影响金(III)芳基还原 C-C 交叉偶联反应速率的因素。采用夹钳配合物 [(C^N^C)AuR](R = CF 、CH = CMe 、Me 和 p-C H X,其中 X = OMe、F、H、tBu、Cl、CF 或 NO )作为起始原料,这些配合物可以方便地获得一系列电子修饰的芳基配体以及金甲基和乙烯基配合物,来研究这些因素。(C^N^C=2,6-(4'-tBuC H )吡啶二阴离子)。原脱金后加入一当量 SMe,定量生成硫醚配合物 [(C^N-CH)AuR(SMe )]。加入第二个 SMe,吡啶被取代,引发还原芳基-R 消除。这些交叉偶联反应的速率按 k(vinyl)>k(aryl)≫k(C F )>k(Me)的顺序增加。乙烯基-芳基偶联特别快,在 221 K 时为 1.15×10  L mol  s,而 C F 和 Me 偶联在 C-C 键形成步骤中遇到更高的能垒。用 P(p-tol)代替 SMe 可大大加速 C-C 偶联。计算模型表明,在 C^N 键合化合物中,在芳基配体能够采用适合 C-C 键形成的构象之前,需要由供体 L 取代 N,以便从四配位中间体发生消除。C-C 键形成是速率限制步骤。在非螯合情况下,从三配位离子 [(Ar )(Ar )AuL] 进行还原 C(sp )-C(sp )消除几乎没有能垒,特别是如果 L=膦。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验