Suppr超能文献

应对大气中 CO 升高的稻田中基质结合膦的产生机制。

Mechanism of matrix-bound phosphine production in response to atmospheric elevated CO in paddy soils.

机构信息

School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210093, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510640, China.

出版信息

Environ Pollut. 2018 Aug;239:253-260. doi: 10.1016/j.envpol.2018.03.082. Epub 2018 Apr 13.

Abstract

To explore the effect of elevated CO concentrations ([CO]) on phosphine formation in paddy fields, the matrix-bound phosphine (MBP) content, different phosphorus fractions and various carbon forms in soil samples from rice cultivation under varying CO concentrations of 400 ppm, 550 ppm and 700 ppm by indoor simulation experiment were determined. This study showed that MBP concentration did not increase significantly with elevated [CO] over four-week cultivation periods of rice seedlings, regardless of soil layers. MBP had a significant positive correlation with total phosphorus (TP) and inorganic phosphorus (IP), and multiple stepwise linear regression analysis further indicated that MBP preservation in neutral paddy soils with depths of 0-20 cm may have been due to conversion from FeP and CaP. Based on redundancy analysis and forward selection analysis, speculated that the formation of MBP in the neutral paddy soils as the response to atmospheric elevated [CO] was due to two processes: (i) FeP transformation affected by the changes of soil respiration (SCO) and TOC was the main precursor for the production of MBP; and (ii) CaP transformation resulting from variation in HCO was the secondary MBP source. The complex combination of these two processes is simultaneously controlled by SCO. In a word, the soil environment in the condition of elevated [CO] was in favor of MBP storage in neutral paddy soils. The results of our study imply that atmospheric CO participates in and has a certain impact on the global biogeochemical cycle of phosphorus.

摘要

为了探究大气 CO 浓度升高([CO])对稻田中磷化氢形成的影响,通过室内模拟实验,测定了在 400 ppm、550 ppm 和 700 ppm 三种不同 CO 浓度下水稻培养 4 周期间,土壤样品中结合态磷(MBP)含量、不同磷组分和各种碳形态的变化。结果表明,在水稻幼苗培养的四周内,MBP 浓度并未随着[CO]的升高而显著增加,与土壤层次无关。MBP 与总磷(TP)和无机磷(IP)呈显著正相关,多元逐步线性回归分析进一步表明,中性稻田土壤(0-20 cm 深)中 MBP 的保存可能是由于 FeP 和 CaP 的转化。冗余分析和逐步向前选择分析表明,中性稻田土壤中 MBP 的形成可能是对大气 CO 升高的响应,其形成机制有两个过程:(i)受土壤呼吸(SCO)和 TOC 变化影响的 FeP 转化是产生 MBP 的主要前体;(ii)HCO 变化导致的 CaP 转化是次要的 MBP 来源。这两个过程的复杂组合受到 SCO 的共同控制。总之,在 CO 浓度升高的条件下,土壤环境有利于 MBP 在中性稻田土壤中的储存。本研究结果表明,大气 CO 参与并对全球磷的生物地球化学循环有一定影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验