Suppr超能文献

利用 z 谱的低秩逼近进行 CEST 成像中的稳健运动校正。

Robust motion correction in CEST imaging exploiting low-rank approximation of the z-spectrum.

机构信息

Department of Diagnostic and Interventional Radiology, University of Würzburg, Germany.

Comprehensive Heart Failure Center, University of Würzburg, Germany.

出版信息

Magn Reson Med. 2018 Nov;80(5):1979-1988. doi: 10.1002/mrm.27206. Epub 2018 Apr 15.

Abstract

PURPOSE

To introduce and evaluate an image registration technique for robust quantification of CEST acquisitions corrupted by motion.

METHODS

The proposed iterative algorithm exploits a low-rank approximation of the z-spectrum (LRAZ), to gradually separate the contrast variation due to saturation at different off-resonance frequencies and accompanying motion. This registration method was first tested in a creatine CEST analysis of a phantom with simulated rigid motion. Subsequently, creatine CEST acquisitions in the human thigh during exercise were exemplarily corrected.

RESULTS

The z-spectrum obtained by applying LRAZ to the corrupted phantom series exhibited a normalized RMS error with respect to the noncorrupted gold standard series of less than 4%. The corresponding creatine map resulting from an asymmetry analysis of the registered data showed only little difference with regard to the noncorrupted determination, too. A comparable performance was observed exploiting LRAZ for the correction of nonrigid motion within the dynamic CEST acquisitions in skeletal muscles. While for the phantom simulations, high-quality registration was also possible by using a single reference image for the whole series and mutual information as similarity metric, this conventional approach resulted in inappropriate correction of the more complicated motion of the human thigh.

CONCLUSION

The newly introduced method allows for a robust registration of CEST image series, which are corrupted by rigid and nonrigid motion of the investigated organ. The technique therefore improves the diagnostic value in various applications of CEST.

摘要

目的

介绍并评估一种图像配准技术,用于稳健地量化CEST 采集,这些采集受到运动的干扰。

方法

所提出的迭代算法利用 z 谱的低秩逼近(LRAZ),逐渐分离出由于在不同失谐频率处饱和以及伴随运动引起的对比度变化。该配准方法首先在带有模拟刚性运动的体模的肌酸 CEST 分析中进行了测试。随后,对人体大腿在运动过程中的肌酸 CEST 采集进行了校正示例。

结果

通过将 LRAZ 应用于受污染的体模系列获得的 z 谱相对于未受污染的黄金标准系列的归一化均方根误差小于 4%。从注册数据的不对称性分析得出的相应肌酸图与未受污染的测定结果也几乎没有差异。在骨骼肌肉的动态 CEST 采集内对非刚性运动进行校正时,也观察到了类似的性能,利用 LRAZ 进行校正。虽然对于体模模拟,通过使用整个系列的单个参考图像和互信息作为相似性度量,也可以实现高质量的配准,但这种传统方法会导致对人体大腿更复杂运动的不适当校正。

结论

新引入的方法允许对CEST 图像系列进行稳健配准,这些图像系列受到研究器官的刚性和非刚性运动的干扰。因此,该技术提高了CEST 在各种应用中的诊断价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验