F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Magn Reson Med. 2020 Dec;84(6):3342-3350. doi: 10.1002/mrm.28380. Epub 2020 Jun 29.
To obtain high-sensitivity CEST maps by exploiting the spatiotemporal correlation between CEST images.
A postprocessing method accomplished by multilinear singular value decomposition (MLSVD) was used to enhance the CEST SNR by exploiting the correlation between the Z-spectrum for each voxel and the low-rank property of the overall CEST data. The performance of this method was evaluated using CrCEST in ischemic mouse brain at 11.7 tesla. Then, MLSVD CEST was applied to obtain Cr, amide, and amine CEST maps of the ischemic mouse brain to demonstrate its general applications.
Complex-valued Gaussian noise was added to CEST k-space data to mimic a low SNR situation. MLSVD CEST analysis was able to suppress the noise, recover the degraded CEST peak, and provide better CrCEST quality compared to the smoothing and singular value decomposition (SVD)-based denoising methods. High-resolution Cr, amide, and amine CEST maps of an ischemic stroke using MLSVD CEST suggest that CrCEST is also a sensitive pH mapping method, and a wide range of pH changes can be detected by combing CrCEST with amine CEST at high magnetic fields.
MLSVD CEST provides a simple and efficient way to improve the SNR of CEST images.
通过利用 CEST 图像之间的时空相关性来获得高灵敏度的 CEST 图谱。
使用多线性奇异值分解(MLSVD)的后处理方法,通过利用每个体素的 Z 谱与整体 CEST 数据的低秩性质之间的相关性,来增强 CEST 的 SNR。在 11.7T 下对缺血性小鼠脑的 CrCEST 进行了该方法的性能评估。然后,应用 MLSVD CEST 获得缺血性小鼠脑的 Cr、酰胺和胺 CEST 图谱,以证明其广泛的应用。
向 CEST k 空间数据中添加复值高斯噪声以模拟低 SNR 情况。与平滑和基于奇异值分解(SVD)的去噪方法相比,MLSVD CEST 分析能够抑制噪声,恢复退化的 CEST 峰,并提供更好的 CrCEST 质量。使用 MLSVD CEST 对缺血性中风进行的高分辨率 Cr、酰胺和胺 CEST 图谱表明,CrCEST 也是一种灵敏的 pH 映射方法,通过在高磁场下将 CrCEST 与胺 CEST 结合,可以检测到广泛的 pH 变化。
MLSVD CEST 为提高 CEST 图像的 SNR 提供了一种简单有效的方法。