Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. Electronic address: https://twitter.com/DBE_MIRA.
Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. Electronic address: https://twitter.com/UTwente.
Trends Biotechnol. 2018 Aug;36(8):850-865. doi: 10.1016/j.tibtech.2018.03.001. Epub 2018 Apr 12.
Single-cell-laden microgels effectively act as the engineered counterpart of the smallest living building block of life: a cell within its pericellular matrix. Recent breakthroughs have enabled the encapsulation of single cells in sub-100-μm microgels to provide physiologically relevant microniches with minimal mass transport limitations and favorable pharmacokinetic properties. Single-cell-laden microgels offer additional unprecedented advantages, including facile manipulation, culture, and analysis of individual cell within 3D microenvironments. Therefore, single-cell microgel technology is expected to be instrumental in many life science applications, including pharmacological screenings, regenerative medicine, and fundamental biological research. In this review, we discuss the latest trends, technical challenges, and breakthroughs, and present our vision of the future of single-cell microgel technology and its applications.
细胞及其细胞外基质。最近的突破使人们能够将单细胞封装在亚 100μm 的微凝胶中,从而为细胞提供具有最小质量传输限制和有利药代动力学特性的生理相关微环境。载单细胞的微凝胶还具有其他前所未有的优势,包括在 3D 微环境中方便地操作、培养和分析单个细胞。因此,单细胞微凝胶技术有望在许多生命科学应用中发挥重要作用,包括药物筛选、再生医学和基础生物学研究。在这篇综述中,我们讨论了最新的趋势、技术挑战和突破,并提出了我们对单细胞微凝胶技术及其应用的未来展望。