Suppr超能文献

土壤中生物炭老化的傅里叶变换红外光谱研究

A Fourier-Transform Infrared Study of Biochar Aging in Soils.

作者信息

Singh B, Fang Y, Johnston C T

机构信息

Faculty of Agriculture and Environment, Univ. of Sydney, Sydney, NSW 2006, Australia.

Crop, Soil and Environmental Science, Purdue Univ., West Lafayette, IN 47907.

出版信息

Soil Sci Soc Am J. 2016;80(3):613-622. doi: 10.2136/sssaj2015.11.0414. Epub 2016 Jun 24.

Abstract

We used diffuse reflectance Fourier-transform infrared (DR-FTIR) spectroscopy, X-ray diffraction (XRD), and chemical and isotopic analyses to characterize the light fraction of four contrasting soils (control and biocharamended soils) to determine changes in biochar properties after aging. Two Eucalyptus saligna Sm. wood biochars, produced at 450°C (B450) and 550°C (B550), were incubated separately in each of the four soils for up to 12 mo at 20, 40, and 60°C. Total C and isotopic (δC) methods were used to quantify the amounts of biochar C and native C mineralized during incubation. The DR-FTIR spectra of the light fraction showed distinct absorption bands representing native soil organic C, biochar C, and mineral constituents present in the soils; the mineral bands were consistent with XRD data of the clay fraction of the four soils. Analysis of the DR-FTIR spectra in the ν(C-H) bands showed that the ratio of the aromatic ν(C-H) bands systematically increased relative to the aliphatic ν(C-H) bands with increasing mineralization of biochar C in the B550 amended soils, and this relationship was unique for each soil type. In contrast, this relationship was not observed for the B450 amended soils that contained a relatively smaller proportion of aromatic C.

摘要

我们使用漫反射傅里叶变换红外(DR-FTIR)光谱、X射线衍射(XRD)以及化学和同位素分析来表征四种对比土壤(对照土壤和生物炭改良土壤)的轻质组分,以确定老化后生物炭性质的变化。两种柳桉木生物炭,分别在450°C(B450)和550°C(B550)下制备,分别在四种土壤中于20、40和60°C下培养长达12个月。采用总碳和同位素(δC)方法来量化培养过程中生物炭碳和原生碳矿化的量。轻质组分的DR-FTIR光谱显示出代表原生土壤有机碳、生物炭碳以及土壤中存在的矿物成分的独特吸收带;矿物带与四种土壤粘粒部分的XRD数据一致。对ν(C-H)波段的DR-FTIR光谱分析表明,在B550改良土壤中,随着生物炭碳矿化程度的增加,芳香族ν(C-H)波段与脂肪族ν(C-H)波段的比例系统性增加,并且这种关系对每种土壤类型都是独特的。相比之下,在含有相对较少芳香碳比例的B450改良土壤中未观察到这种关系。

相似文献

1
A Fourier-Transform Infrared Study of Biochar Aging in Soils.
Soil Sci Soc Am J. 2016;80(3):613-622. doi: 10.2136/sssaj2015.11.0414. Epub 2016 Jun 24.
4
Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature.
Environ Sci Technol. 2012 Nov 6;46(21):11770-8. doi: 10.1021/es302545b. Epub 2012 Oct 10.
5
Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars.
Spectrochim Acta A Mol Biomol Spectrosc. 2016 Nov 5;168:29-36. doi: 10.1016/j.saa.2016.05.049. Epub 2016 May 31.
8
Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils.
Sci Total Environ. 2017 Jan 15;576:559-571. doi: 10.1016/j.scitotenv.2016.10.119. Epub 2016 Oct 27.
9
Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.
Sci Total Environ. 2014 Jun 1;482-483:1-7. doi: 10.1016/j.scitotenv.2014.02.103. Epub 2014 Mar 15.
10
Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil.
ScientificWorldJournal. 2014;2014:602197. doi: 10.1155/2014/602197. Epub 2014 Dec 8.

引用本文的文献

1
Surface Modification of Biochar to Prepare Environmentally Friendly Electrochemical Biosensors for Detection of Cardiac Troponin T.
ACS Omega. 2025 Jun 9;10(24):25842-25854. doi: 10.1021/acsomega.5c02113. eCollection 2025 Jun 24.
4
Adsorption of organic contaminants of emerging concern using microalgae-derived hydrochars.
Sci Rep. 2025 Mar 17;15(1):9059. doi: 10.1038/s41598-025-92717-y.
5
Removal of Antibiotics from Swine Wastewater Using an Environmentally Friendly Biochar: Performance and Mechanisms.
ACS Omega. 2025 Feb 18;10(8):7711-7721. doi: 10.1021/acsomega.4c07266. eCollection 2025 Mar 4.
8
Effects of physical, chemical, and biological ageing on the mineralization of pine wood biochar by a Streptomyces isolate.
PLoS One. 2022 Apr 7;17(4):e0265663. doi: 10.1371/journal.pone.0265663. eCollection 2022.
9
Biochar-cadmium retention and its effects after aging with Hydrogen Peroxide (HO).
Heliyon. 2021 Nov 26;7(12):e08476. doi: 10.1016/j.heliyon.2021.e08476. eCollection 2021 Dec.
10
Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling.
PLoS One. 2021 Jul 20;16(7):e0233242. doi: 10.1371/journal.pone.0233242. eCollection 2021.

本文引用的文献

3
Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.
Environ Sci Technol. 2011 Nov 15;45(22):9611-8. doi: 10.1021/es202186j. Epub 2011 Oct 20.
4
Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils.
J Environ Qual. 2010 Jul-Aug;39(4):1224-35. doi: 10.2134/jeq2009.0138.
5
Temperature sensitivity of black carbon decomposition and oxidation.
Environ Sci Technol. 2010 May 1;44(9):3324-31. doi: 10.1021/es903016y.
6
Abiotic and microbial oxidation of laboratory-produced black carbon (biochar).
Environ Sci Technol. 2010 Feb 15;44(4):1295-301. doi: 10.1021/es903140c.
8
A handful of carbon.
Nature. 2007 May 10;447(7141):143-4. doi: 10.1038/447143a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验