Suppr超能文献

广义二维相关红外光谱揭示了植物衍生生物炭表面电荷和抗降解性发展的机制。

Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars.

机构信息

Water Management and Hydrologic Sciences, Texas A&M University, College Station, Texas 77843, United States.

出版信息

Environ Sci Technol. 2012 Oct 2;46(19):10641-50. doi: 10.1021/es302971d. Epub 2012 Sep 18.

Abstract

Fundamental knowledge of how biochars develop surface-charge and resistance to environmental degradation is crucial to their production for customized applications or understanding their functions in the environment. Two-dimensional perturbation-based correlation infrared spectroscopy (2D-PCIS) was used to study the biochar formation process in three taxonomically different plant biomass, under oxygen-limited conditions along a heat-treatment-temperature gradient (HTT; 200-650 °C). Results from 2D-PCIS pointed to the systematic, HTT-induced defragmenting of lignocellulose H-bonding network and demethylenation/demethylation, oxidation, or dehydroxylation/dehydrogenation of lignocellulose fragments as the primary reactions controlling biochar properties along the HTT gradient. The cleavage of OH(...)O-type H-bonds, oxidation of free primary hydroxyls to carboxyls (carboxylation; HTT ≤ 500 °C), and their subsequent dehydrogenation/dehydroxylation (HTT > 500 °C) controlled surface charge on the biochars; while the dehydrogenation of methylene groups, which yielded increasingly condensed structures (R-CH(2)-R →R═CH-R →R═C═R), controlled biochar recalcitrance. Variations in biochar properties across plant biomass type were attributable to taxa-specific transformations. For example, apparent inefficiencies in the cleavage of wood-specific H-bonds, and their subsequent oxidation to carboxyls, lead to lower surface charge in wood biochars (compared to grass biochars). Both nontaxa and taxa-specific transformations highlighted by 2D-PCIS could have significant implications for biochar functioning in fire-impacted or biochar-amended systems.

摘要

生物炭表面电荷和抗环境降解能力的基本知识对于根据特定应用需求生产生物炭或理解其在环境中的功能至关重要。二维微扰相关红外光谱(2D-PCIS)被用于研究三种在分类学上不同的植物生物质在氧限制条件下沿着热处理温度梯度(HTT;200-650°C)形成生物炭的过程。2D-PCIS 的结果表明,木质纤维素氢键网络的系统 HTT 诱导碎片化、木质纤维素片段的脱甲基化/脱甲基、氧化或去羟化/脱氢作用是控制 HTT 梯度上生物炭性质的主要反应。OH(...)O 型氢键的断裂、游离伯羟基氧化为羧基(羧化;HTT≤500°C)及其随后的脱氢/去羟化(HTT>500°C)控制生物炭的表面电荷;而亚甲基的脱氢作用产生了越来越密集的结构(R-CH(2)-R→R═CH-R→R═C═R),控制了生物炭的抗降解性。不同植物生物质类型的生物炭性质的变化归因于分类特异性转化。例如,木材特异性氢键的断裂及其随后的氧化为羧基的明显低效导致木材生物炭的表面电荷较低(与草生物炭相比)。2D-PCIS 强调的非分类特异性和分类特异性转化可能对受火灾影响或添加生物炭的系统中的生物炭功能有重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验