Suppr超能文献

一种基于对向射流的粒子操控方法及其实验研究。

A particle manipulation method and its experimental study based on opposed jets.

作者信息

Zhang Qin, Fan Jibin, Fan Jinbin, Wang Han, Aoyama Hisayuki

机构信息

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.

Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, Tokyo 182-8585, Japan.

出版信息

Biomicrofluidics. 2018 Mar 27;12(2):024110. doi: 10.1063/1.5020600. eCollection 2018 Mar.

Abstract

A particle manipulation method was presented in this paper based on opposed jets. In such a method, particles were trapped near the stagnation point of the flow field and moved by controlling the position of the stagnation point. The hold direction of the flow to the particle was changed by changing the orientation of the opposed-jet flow field where a particle is trapped. Subsequently, the directional and quantitative movement of the particle in any direction was achieved. Taking micron particles as examples, we analyzed the control mechanism of particles based on opposed jets and evaluated the influence of jet velocity, inner diameter, distance of end face, radial error, and position of capillaries on the particle control performance by simulations. The feasibility of the proposed method was proved by a great number of experiments, and the results demonstrated that particles with the arbitrary size and shape can be trapped and moved directionally and quantitatively by constructing an opposed-jet flow field. The trapping and position control of particles can be manipulated without any contact with proper flow field parameters.

摘要

本文提出了一种基于对向射流的粒子操控方法。在这种方法中,粒子被困在流场的驻点附近,并通过控制驻点位置来移动。通过改变粒子被困的对向射流流场的方向,改变了流向粒子的流体方向。随后,实现了粒子在任意方向上的定向和定量移动。以微米级粒子为例,通过模拟分析了基于对向射流的粒子控制机制,并评估了射流速度、内径、端面距离、径向误差和毛细管位置对粒子控制性能的影响。大量实验证明了该方法的可行性,结果表明,通过构建对向射流流场,可以对任意尺寸和形状的粒子进行捕获、定向和定量移动。在适当的流场参数下,无需任何接触即可对粒子进行捕获和位置控制。

相似文献

3
Jet flow in steadily swimming adult squid.成年鱿鱼稳定游动时的射流
J Exp Biol. 2005 Mar;208(Pt 6):1125-46. doi: 10.1242/jeb.01507.
5
Solid-particle jet formation under shock-wave acceleration.冲击波加速下的固体颗粒射流形成
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):063011. doi: 10.1103/PhysRevE.88.063011. Epub 2013 Dec 12.
6
A pi-shaped ultrasonic tweezers concept for manipulation of small particles.一种用于操控小颗粒的π形超声镊子概念。
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Nov;51(11):1499-507. doi: 10.1109/tuffc.2004.1367491.
7
Kinetics of particle deposition in the oblique impinging jet cell.倾斜冲击射流池内颗粒沉积的动力学
J Colloid Interface Sci. 2004 Jan 1;269(1):53-61. doi: 10.1016/j.jcis.2003.07.010.
8
Formation mechanism of shock-induced particle jetting.冲击诱导颗粒喷射的形成机制。
Phys Rev E. 2016 Aug;94(2-1):022903. doi: 10.1103/PhysRevE.94.022903. Epub 2016 Aug 16.

本文引用的文献

4
Ultrasonic manipulation of particles in an open fluid film.开放流体薄膜中粒子的超声操控
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Sep;60(9):1964-70. doi: 10.1109/TUFFC.2013.2781.
7
Hydrodynamic trap for single particles and cells.用于单个颗粒和细胞的流体动力学阱。
Appl Phys Lett. 2010 May 31;96(22):224101. doi: 10.1063/1.3431664. Epub 2010 Jun 2.
9
Positioning, displacement, and localization of cells using ultrasonic forces.
Biotechnol Bioeng. 2005 Oct 5;92(1):8-14. doi: 10.1002/bit.20540.
10
Control of nanoparticles with arbitrary two-dimensional force fields.利用任意二维力场控制纳米颗粒。
Phys Rev Lett. 2005 Mar 25;94(11):118102. doi: 10.1103/PhysRevLett.94.118102. Epub 2005 Mar 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验