Suppr超能文献

用于电化学应用的双电子/锂离子导电聚合物复合材料中的高效传输网络。

Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications.

机构信息

Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.

出版信息

ACS Appl Mater Interfaces. 2018 May 9;10(18):15681-15690. doi: 10.1021/acsami.8b01519. Epub 2018 Apr 30.

Abstract

In this work, an all-functional polymer material composed of the electrically conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10 S cm) and, counterintuitively, electronic conductivity (∼45 S cm) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS-PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.

摘要

在这项工作中,开发了一种由导电聚(3,4-亚乙基二氧噻吩):聚(4-苯乙烯磺酸)(PEDOT:PSS)和锂离子导电聚(环氧乙烷)(PEO)组成的全功能聚合物材料,以形成用于电化学应用的三维电极的双导体。该复合材料表现出增强的离子导电性(约 10 S cm)和,与直觉相反,电子导电性(约 45 S cm)随 PEO 比例增加,在单体比为 20:1 PEO:PEDOT 时最佳。显微镜揭示了一种独特的形态,其中 PSS 与 PEO 有利相互作用,使 PEDOT 不稳定,形成高度分支、相互连接的网络,尽管浓度相对较低,但允许更有效的电子传输。热和 X 射线技术证实,PSS-PEO 畴抑制结晶度,解释了高离子电导率。尽管存在已知的两个单独组件的问题,但在锂电池环境中的电化学实验表明,由于双传输特性,循环稳定性和过电势得到改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验