Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
Int J Mol Sci. 2018 Apr 16;19(4):1212. doi: 10.3390/ijms19041212.
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4⁺ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4⁺ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4⁺ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
多发性硬化症(MS)细胞中的脱髓鞘是几种能量代谢异常的部位,这些异常是由过氧化物酶体增殖物激活受体 γ(PPARγ)和 WNT/β-连环蛋白途径之间的失调所驱动的。我们的综述重点关注 MS 中脱髓鞘过程中观察到的经典 WNT/β-连环蛋白途径和 PPARγ 之间的相反相互作用及其对能量代谢重编程的影响。MS 中的脱髓鞘与慢性炎症有关,慢性炎症本身与 CD4+Th17 细胞释放细胞因子和 PPARγ 表达下调有关,导致 WNT/β-连环蛋白途径上调。WNT/β-连环蛋白信号的上调诱导糖酵解酶的激活,改变其能量代谢行为。然后,在 MS 细胞中,大部分细胞质中的丙酮酸转化为乳酸。尽管有氧气存在,但这种现象仍被称为瓦伯格效应。瓦伯格效应是能量传递产物从线粒体氧化磷酸化向有氧糖酵解的转移。乳酸的产生与 WNT/β-连环蛋白信号的增加和脱髓鞘过程相关,通过诱导 CD4+T 细胞功能障碍导致轴突和神经元损伤。在 MS 中,PPARγ 的下调降低了胰岛素敏感性并增加了神经炎症。PPARγ 激动剂抑制 CD4+T 细胞中的 Th17 分化,从而减少细胞因子的释放。在 MS 中,昼夜节律调节异常刺激 WNT 途径启动脱髓鞘过程。此外,PPARγ 有助于一些关键生物钟基因的调节。因此,PPARγ 激动剂通过直接抑制 WNT/β-连环蛋白途径和昼夜节律来干扰能量代谢重编程,由于这些相互作用,它们可能成为 MS 的有前途的治疗方法。