Suppr超能文献

pysster:通过使用卷积神经网络学习序列和结构基元对生物序列进行分类。

pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks.

机构信息

Otto-Warburg-Laboratory, RNA Bioinformatics, Max Planck Institute for Molecular Genetics, Berlin, Germany.

Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany.

出版信息

Bioinformatics. 2018 Sep 1;34(17):3035-3037. doi: 10.1093/bioinformatics/bty222.

Abstract

SUMMARY

Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.

AVAILABILITY AND IMPLEMENTATION

pysster is freely available at https://github.com/budach/pysster.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

卷积神经网络 (CNN) 在各种任务中表现出色,包括生物序列分类。然而,现有的实现通常针对特定任务进行了优化,难以重用。为了使研究人员更轻松地利用这些网络,我们实现了 pysster,这是一个用于在生物序列数据上训练 CNN 的 Python 包。通过学习序列和结构基序对序列进行分类,该包提供了自动超参数优化过程以及可视化学习基序以及有关其位置和类富集的信息的选项。该包在 CPU 和 GPU 上无缝运行,并提供了一个简单的接口,只需几行代码即可训练和评估网络。使用 RNA A-to-I 编辑数据集和交联免疫沉淀 (CLIP)-seq 结合位点序列,我们证明了 pysster 比以前的方法(如 GraphProt 或 ssHMM)更准确地对序列进行分类,并能够恢复已知的序列和结构基序。

可用性和实现

pysster 可在 https://github.com/budach/pysster 上免费获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f9/6129303/ca90d4ff2ab2/bty222f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验