Lin Jiecong
City University of Hong Kong, Kowloon Tong, Hong Kong.
Methods Mol Biol. 2021;2212:277-289. doi: 10.1007/978-1-0716-0947-7_17.
We report a step-by-step protocol to use pysster, a TensorFlow-based package for building deep neural networks on a broad range of epistatic sequences such as DNA, RNA, or annotated secondary structure sequences. Pysster provides users comprehensive supports for developing, training, and evaluating the self-defined deep neural networks on sequence data. Moreover, pysster allows users to easily visualize the resulting perditions, which is helpful to uncover the "black box" of deep neural networks. Here, we describe a step-by-step application of pysster to classify the RNA A-to-I editing regions and interpret the model predictions. To further demonstrate the generalizability of pysster, we utilized it to build and evaluated a new deep neural network on an artificial epistatic sequence dataset.
我们报告了一个逐步的协议,用于使用pysster,这是一个基于TensorFlow的软件包,用于在广泛的上位性序列(如DNA、RNA或注释的二级结构序列)上构建深度神经网络。Pysster为用户在序列数据上开发、训练和评估自定义深度神经网络提供全面支持。此外,pysster允许用户轻松可视化结果预测,这有助于揭示深度神经网络的“黑匣子”。在这里,我们描述了pysster对RNA A-to-I编辑区域进行分类并解释模型预测的逐步应用。为了进一步证明pysster的通用性,我们利用它在一个人工上位性序列数据集上构建并评估了一个新的深度神经网络。