Suppr超能文献

RBPsuite 2.0:一个基于深度学习的、在物种和蛋白质上具有高覆盖率的更新版RNA-蛋白质结合位点预测套件。

RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning.

作者信息

Pan Xiaoyong, Fang Yi, Liu Xiaojian, Guo Xiaoyu, Shen Hong-Bin

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.

出版信息

BMC Biol. 2025 Mar 11;23(1):74. doi: 10.1186/s12915-025-02182-2.

Abstract

BACKGROUND

RNA-binding proteins (RBPs) play crucial roles in many biological processes, and computationally identifying RNA-RBP interactions provides insights into the biological mechanism of diseases associated with RBPs.

RESULTS

To make the RBP-specific deep learning-based RBP binding sites prediction methods easily accessible, we developed an updated easy-to-use webserver, RBPsuite 2.0, with an updated web interface for predicting RBP binding sites from linear and circular RNA sequences. RBPsuite 2.0 has a higher coverage on the number of supported RBPs and species compared to the original RBPsuite, supporting an increased number of RBPs from 154 to 353 and expanding the supported species from one to seven. Additionally, RBPsuite 2.0 replaces the CRIP built into RBPsuite 1.0 with iDeepC, a more accurate RBP binding site predictor for circular RNAs. Furthermore, RBPsuite 2.0 estimates the contribution score of individual nucleotides on the input sequences as potential binding motifs and links to the UCSC browser track for better visualization of the prediction results.

CONCLUSIONS

RBPsuite 2.0 is an updated, more comprehensive webserver for predicting RBP binding sites in both linear and circular RNA sequences. It supports more RBPs and species and provides more accurate predictions for circular RNAs. The tool is freely available at http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/ .

摘要

背景

RNA结合蛋白(RBPs)在许多生物学过程中发挥着关键作用,通过计算识别RNA-RBP相互作用有助于深入了解与RBPs相关疾病的生物学机制。

结果

为了使基于深度学习的RBP特异性RBP结合位点预测方法易于使用,我们开发了一个更新的易于使用的网络服务器RBPsuite 2.0,其具有更新的网络界面,可从线性和环状RNA序列预测RBP结合位点。与原始的RBPsuite相比,RBPsuite 2.0在支持的RBPs数量和物种方面具有更高的覆盖率,支持的RBPs数量从154个增加到353个,支持的物种从1个扩展到7个。此外,RBPsuite 2.0用iDeepC取代了RBPsuite 1.0中内置的CRIP,iDeepC是一种用于环状RNA的更准确的RBP结合位点预测器。此外,RBPsuite 2.0估计输入序列上单个核苷酸作为潜在结合基序的贡献得分,并链接到UCSC浏览器轨道以更好地可视化预测结果。

结论

RBPsuite 2.0是一个更新的、更全面的网络服务器,用于预测线性和环状RNA序列中的RBP结合位点。它支持更多的RBPs和物种,并为环状RNA提供更准确的预测。该工具可在http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af3/11899677/05246972aab6/12915_2025_2182_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验