BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av, 36 Tomsk, Russia.
BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina av, 36 Tomsk, Russia; N Laverov Federal Center for Integrated Arctic Research, Institute of Ecological Problems of the North, Russian Academy of Science, Arkhangelsk, Russia.
Sci Total Environ. 2018 Sep 1;634:1004-1023. doi: 10.1016/j.scitotenv.2018.04.059. Epub 2018 Apr 11.
Soil pore waters are a vital component of the ecosystem as they are efficient tracers of mineral weathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of the world. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1°C mean annual temperature, 360 to 600mm annual precipitation), active layer thickness (ALT) (>300 to 40cm), and permafrost coverage (sporadic, discontinuous and continuous). We analyzed CO, CH, dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting the WSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the supra-permafrost water with increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3°N to 67.4°N. However, a number of solutes (DOC, CO, alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO, DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease.
土壤孔隙水是生态系统的重要组成部分,因为它们是矿物风化、植物凋落物淋溶以及植被养分吸收的有效示踪剂。在永久冻土环境中,通过超永久冻土流(即水、气体、悬浮物质和溶质在永久冻土层上的迁移),土壤向河流和湖泊的水力连通性和元素输送达到最大值。为了评估永久冻土融化和气候变暖对碳和温室气体(GHG)动态的可能影响,我们在世界上最大的冻结泥炭地采用了“替代时间空间”方法。我们在西西伯利亚低地(WSL)的泥炭柱中采样了停滞的超永久冻土(活动层)水,该地区的气候存在显著梯度(年平均温度为-4.0 至-9.1°C,年降水量为 360 至 600mm),活动层厚度(ALT)(>300 至 40cm)和永久冻土覆盖率(零星、不连续和连续)。我们分析了 93 个土壤坑样本中的 CO、CH、溶解碳以及主要和微量元素(TE),这些样本对应于构成 WSL 地区的几个典型微地貌(泥炭丘、洼地、永久冻土沉降和凹陷)。我们预计,随着永久冻土覆盖率的增加、年平均温度和 ALT 的降低,从土壤和植被凋落物到超永久冻土水中的 DOC 和 TE 迁移强度会降低,从 62.3°N 到 67.4°N 的纬度剖面。然而,一些溶质(DOC、CO、碱性土金属、Si、三价和四价水解物以及微量元素(Mn、Co、Ni、Cu、V、Mo)表现出向北增加的趋势,在连续永久冻土带内浓度最高。在“替代时间空间”气候变化情景和永久冻土边界的北移下,我们的结果表明,在融冻层之间的边界处,CO、DOC 和许多主要和微量元素将降低其在土壤超永久冻土水中的浓度。因此,DOC 和元素从泥炭土壤向 WSL 的湖泊和河流(以及进一步向北冰洋)的输出可能会减少。