Department of Geography, University of Montréal, Montréal, Québec, Canada.
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
Glob Chang Biol. 2019 May;25(5):1746-1764. doi: 10.1111/gcb.14574. Epub 2019 Feb 25.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO ) and methane (CH ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO -C m day ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO -C m day , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating ( C) of respired CO , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO flux. Elevated concentrations of CO , CH , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH in the peat column, however, prevented CH release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO losses over longer timescales.
多年冻土泥炭地是北极地区的生物地球化学热点,因为它们储存了大量的碳。多年冻土的融化可能会将这些长期固定的碳储量中的一部分以温室气体(GHG)二氧化碳(CO )和甲烷(CH )的形式释放到大气中,但释放量、在哪个时间段以及以哪种气态碳形式仍然高度不确定。在这里,我们评估了在不同湿度和植被条件下多年冻土解冻对 GHG 动态的影响在一个多年冻土泥炭地。一种新的实验方法,使用完整的植物-土壤系统(中尺度模型),使我们能够在近自然条件下模拟多年冻土的融化。我们通过高分辨率的气流测量来监测 GHG 通量动态,结合对土壤 GHG 浓度动态的详细监测,深入了解各个土壤层的 GHG 产生和消耗潜力。在干燥条件下融化上层 10-15 厘米的多年冻土会增加 CO 向大气中的排放(无植被:0.74±0.49 与 0.84±0.60 g CO -C m -2 d -1 ;有植被:1.20±0.50 与 1.32±0.60 g CO -C m -2 d -1 ,平均值±SD,分别为解冻前后)。通过放射性碳测年( 14 C)对呼吸 CO 的支持,以及一种独立的曲线拟合方法,表明这种增强的解冻后 CO 通量明显受到了老碳的贡献(9%-27%)。CO 、CH 和溶解有机碳在深处的浓度升高不仅表明在融化过程中有脉冲排放,而且还表明解冻后的多年冻土在持续分解和 GHG 产生。然而,在泥炭柱中 CH 的氧化阻止了 CH 向大气中的释放。重要的是,我们在这里表明,在干燥条件下,泥炭地通过在解冻后增加大气 CO 的负担来加强多年冻土-碳反馈。然而,只要地下水位保持较低,我们的结果就揭示了这些类型的北极生态系统在解冻前后具有很强的 CH 汇能力,有可能在较长时间尺度上补偿部分多年冻土 CO 的损失。