Suppr超能文献

Refolding transition of alpha-chymotrypsin: pH and salt dependence.

作者信息

Stoesz J D, Lumry R W

出版信息

Biochemistry. 1978 Sep 5;17(18):3693-9. doi: 10.1021/bi00611a003.

Abstract

It is well known that alpha-chymotrypsin can exist in two major conformational states, only one of which is active. We have examined the pH (pH 2.0--11.0) and salt (ionic strength 0.01--1.0) dependence of the transition between the active and inactive forms in detail. At low pH (pH 2.0--6.0) the equilibrium is very dependent on salt concentration, with high salt concentrations effectively stabilizing the active conformation. This apparent stabilization is an artifact due to the salt-dependent dimerization of alpha-chymotrypsin, and our data show that only active species form dimers and higher aggregates. At neutral pH (6.0--8.0) dimerization is absent, yet an ionic strength dependence remains. The effects show no lyotropic order and appear to be due to preferential salt binding to the active conformation at one or possibly a few sites. Above pH 6 (pH 6.0--11.0), the pH dependence can be described by a two-ionization mechanism at all ionic strengths. We report values for all seven equilibrium constants in the proposed mechanism at four ionic strengths (mu = 0.01, 0.05, 0.2, and 1.0). The transition is the first "refolding" transition to be studied at high precision, but, even so, certain decisions about the mechanism must await higher experimental precision not available with present methods.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验