Mátrai Janka, Jonckheer Abel, Joris Eddy, Krüger Peter, Carpenter Eric, Tuszynski Jack, De Maeyer Marc, Engelborghs Yves
Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200, Leuven, Belgium.
Eur Biophys J. 2008 Nov;38(1):13-23. doi: 10.1007/s00249-008-0348-2. Epub 2008 Aug 27.
Correlating the experimentally observed kinetics of protein conformational changes with theoretical predictions is a formidable and challenging task, due to the multitude of degrees of freedom (>5,000) in a protein and the huge gap between the timescale of the kinetic event of interest (ms) and the typical timescale of computer simulations (ns). In this study we show that using the targeted molecular dynamics (TMD) method it is possible to simulate conformational changes of the ms time range and to correlate multiple simulations of single pathways with ensemble experiments on both the structural and energetic basis. As a model system we chose to study the conformational change of rat-Deltaalpha-chymotrypsin from its inactive to its active conformation. This activation process has been analyzed previously by experimental and theoretical methods, i.e. fluorescence stopped-flow spectroscopy (FSF), molecular dynamics (MD) and TMD. Inspired by the results of these studies on the wild type (WT) enzyme, several mutants were constructed to alter the conformational pathway and studied by FSF measurements. In the present work WT and mutant N18G were subjected to multiple MD and subsequent TMD simulations. We report the existence of two main activation pathways, a feature of chymotrypsin activation that has been hitherto unknown. A method to correlate the energetics of the different pathways calculated by TMD and the kinetic parameters observed by experimental methods such as FSF is presented. Our work is relevant for experimental single molecule studies of enzymes in general.
将实验观察到的蛋白质构象变化动力学与理论预测相关联是一项艰巨且具有挑战性的任务,这是由于蛋白质中存在大量的自由度(>5000),以及感兴趣的动力学事件的时间尺度(毫秒)与计算机模拟的典型时间尺度(纳秒)之间存在巨大差距。在本研究中,我们表明使用靶向分子动力学(TMD)方法可以模拟毫秒时间范围内的构象变化,并在结构和能量基础上,将单个途径的多次模拟与整体实验相关联。作为一个模型系统,我们选择研究大鼠 - δα - 胰凝乳蛋白酶从无活性构象到活性构象的构象变化。此前已经通过实验和理论方法,即荧光停流光谱法(FSF)、分子动力学(MD)和TMD,对这个激活过程进行了分析。受这些关于野生型(WT)酶研究结果的启发,构建了几个突变体以改变构象途径,并通过FSF测量进行研究。在本工作中,对WT和突变体N18G进行了多次MD及随后的TMD模拟。我们报告了存在两条主要的激活途径,这是胰凝乳蛋白酶激活过程中一个迄今未知的特征。本文提出了一种方法,用于关联由TMD计算的不同途径的能量学与通过诸如FSF等实验方法观察到的动力学参数。我们的工作总体上与酶的实验单分子研究相关。