Suppr超能文献

基于丹麦国家注册中心的登记算法识别自杀事件的阳性预测值。

Positive predictive value of a register-based algorithm using the Danish National Registries to identify suicidal events.

机构信息

National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.

The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Oct;27(10):1131-1138. doi: 10.1002/pds.4433. Epub 2018 Apr 17.

Abstract

PURPOSE

It is not possible to fully assess intention of self-harm and suicidal events using information from administrative databases. We conducted a validation study of intention of suicide attempts/self-harm contacts identified by a commonly applied Danish register-based algorithm (DK-algorithm) based on hospital discharge diagnosis and emergency room contacts.

METHODS

Of all 101 530 people identified with an incident suicide attempt/self-harm contact at Danish hospitals between 1995 and 2012 using the DK-algorithm, we selected a random sample of 475 people. We validated the DK-algorithm against medical records applying the definitions and terminology of the Columbia Classification Algorithm of Suicide Assessment of suicidal events, nonsuicidal events, and indeterminate or potentially suicidal events. We calculated positive predictive values (PPVs) of the DK-algorithm to identify suicidal events overall, by gender, age groups, and calendar time.

RESULTS

We retrieved medical records for 357 (75%) people. The PPV of the DK-algorithm to identify suicidal events was 51.5% (95% CI: 46.4-56.7) overall, 42.7% (95% CI: 35.2-50.5) in males, and 58.5% (95% CI: 51.6-65.1) in females. The PPV varied further across age groups and calendar time. After excluding cases identified via the DK-algorithm by unspecific codes of intoxications and injury, the PPV improved slightly (56.8% [95% CI: 50.0-63.4]).

CONCLUSIONS

The DK-algorithm can reliably identify self-harm with suicidal intention in 52% of the identified cases of suicide attempts/self-harm. The PPVs could be used for quantitative bias analysis and implemented as weights in future studies to estimate the proportion of suicidal events among cases identified via the DK-algorithm.

摘要

目的

使用来自行政数据库的信息,无法全面评估自残和自杀事件的意图。我们对一种常用的丹麦基于登记的算法(DK 算法)确定的自杀未遂/自残接触的意图进行了验证研究,该算法基于医院出院诊断和急诊室接触。

方法

在 1995 年至 2012 年期间,使用 DK 算法在丹麦医院确定了 101 530 例自杀未遂/自残接触的事件中,我们随机选择了 475 人。我们根据自杀评估哥伦比亚分类算法的定义和术语,将 DK 算法与医疗记录进行了验证,该算法用于自杀事件、非自杀事件和不确定或潜在自杀事件。我们计算了 DK 算法总体上、按性别、年龄组和日历时间识别自杀事件的阳性预测值(PPV)。

结果

我们检索了 357 名(75%)人的医疗记录。DK 算法识别自杀事件的 PPV 总体为 51.5%(95%CI:46.4-56.7),男性为 42.7%(95%CI:35.2-50.5),女性为 58.5%(95%CI:51.6-65.1)。PPV 进一步因年龄组和日历时间而异。排除 DK 算法通过非特定的中毒和伤害代码识别的病例后,PPV略有提高(56.8%[95%CI:50.0-63.4])。

结论

DK 算法可以可靠地识别 52%的自杀未遂/自残识别案例中具有自杀意图的自伤行为。PPV 可用于定量偏差分析,并在未来的研究中实施为权重,以估计通过 DK 算法识别的病例中自杀事件的比例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验