Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02120, USA.
Pharmacoepidemiol Drug Saf. 2010 Dec;19(12):1263-75. doi: 10.1002/pds.2037. Epub 2010 Oct 3.
Suicidal behavior has gained attention as an adverse outcome of prescription drug use. Hospitalizations for intentional self-harm, including suicide, can be identified in administrative claims databases using external cause of injury codes (E-codes). However, rates of E-code completeness in US government and commercial claims databases are low due to issues with hospital billing software.
To develop an algorithm to identify intentional self-harm hospitalizations using recorded injury and psychiatric diagnosis codes in the absence of E-code reporting.
We sampled hospitalizations with an injury diagnosis (ICD-9 800-995) from two databases with high rates of E-coding completeness: 1999-2001 British Columbia, Canada data and the 2004 US Nationwide Inpatient Sample. Our gold standard for intentional self-harm was a diagnosis of E950-E958. We constructed algorithms to identify these hospitalizations using information on type of injury and presence of specific psychiatric diagnoses.
The algorithm that identified intentional self-harm hospitalizations with high sensitivity and specificity was a diagnosis of poisoning, toxic effects, open wound to elbow, wrist, or forearm, or asphyxiation; plus a diagnosis of depression, mania, personality disorder, psychotic disorder, or adjustment reaction. This had a sensitivity of 63%, specificity of 99% and positive predictive value (PPV) of 86% in the Canadian database. Values in the US data were 74, 98, and 73%. PPV was highest (80%) in patients under 25 and lowest those over 65 (44%).
The proposed algorithm may be useful for researchers attempting to study intentional self-harm in claims databases with incomplete E-code reporting, especially among younger populations.
自杀行为已成为处方药物使用的不良后果之一,引起了广泛关注。可以使用伤害外部原因编码(E 编码)从行政索赔数据库中识别出于故意的自我伤害住院,包括自杀。然而,由于医院计费软件存在问题,美国政府和商业索赔数据库中 E 编码的完整性较低。
开发一种算法,在没有 E 编码报告的情况下,使用记录的伤害和精神科诊断代码识别故意的自我伤害住院。
我们从两个 E 编码完整性较高的数据库中采样了带有伤害诊断(ICD-9 800-995)的住院病例:1999-2001 年加拿大不列颠哥伦比亚省数据和 2004 年美国全国住院患者样本。我们将 E950-E958 的诊断作为故意自我伤害的金标准。我们使用伤害类型和特定精神科诊断的信息构建了用于识别这些住院的算法。
用于识别故意自我伤害住院的高灵敏度和特异性算法是中毒、有毒作用、肘部、手腕或前臂开放性伤口、窒息的诊断;再加上抑郁、躁狂、人格障碍、精神病性障碍或适应反应的诊断。在加拿大数据库中,该算法的敏感性为 63%,特异性为 99%,阳性预测值(PPV)为 86%。在美国数据中的值分别为 74%、98%和 73%。PPV 在 25 岁以下患者中最高(80%),65 岁以上患者中最低(44%)。
该提议的算法可能对试图在 E 编码报告不完整的索赔数据库中研究故意自我伤害的研究人员有用,特别是在年轻人群中。