Nasreddine Zaki A, Pal Devendra, Ariya Parisa A
Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal QC H3A 2K6 Canada
Department of Atmospheric and Oceanic Sciences, McGill University 805 Sherbrooke Street West Montreal QC H3A 0B9 Canada.
RSC Adv. 2025 Aug 27;15(37):30639-30653. doi: 10.1039/d5ra03401a. eCollection 2025 Aug 22.
Organic and inorganic aerosol particles in the atmosphere are significant drivers of climate change and pose risks to human health. Biomass burning and combustion processes are substantial sources of these particles, mainly inorganic carbonaceous aerosols (IC) such as black carbon (BC), carbon nanotubes (CNT), and graphite. Despite their environmental relevance, the physicochemical properties of IC are not well characterized, limiting the accuracy of their impact assessments on the Earth's radiative balance and human health. In this study, we demonstrate, for the first time, an and real-time quantitative analysis of the physicochemical properties of IC aerosols, including 3D sizes, shapes, phases, and surfaces along with 4D tracking, using an improved nano-digital in-line holography microscope (AI-Nano-DIHM) with a temporal resolution of 62.5 ms. The AI-Nano-DIHM is integrated with two customized AI-driven software programs, enabling automated classification and physicochemical analysis of BC, CNT, and graphite in air and water environments under stationary and dynamic conditions. Our results demonstrate that AI-Nano-DIHM effectively detects nano- and micrometre-sized IC particles, ranging from 60 nm to 200 μm across all three dimensions (width, height, and length). The results obtained from AI-Nano-DIHM were validated using High-Resolution Scanning/Transmission Electron Microscopy (HR-S/TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). We discuss the significant potential of AI-Nano-DIHM as a cost-effective, rapid, and accurate and real-time technique for characterizing IC aerosols, with important implications for environmental, and health-related outcomes.
大气中的有机和无机气溶胶颗粒是气候变化的重要驱动因素,并对人类健康构成风险。生物质燃烧和燃烧过程是这些颗粒的主要来源,主要是无机碳质气溶胶(IC),如黑碳(BC)、碳纳米管(CNT)和石墨。尽管它们与环境相关,但IC的物理化学性质尚未得到很好的表征,这限制了它们对地球辐射平衡和人类健康影响评估的准确性。在本研究中,我们首次展示了使用改进的具有62.5毫秒时间分辨率的纳米数字在线全息显微镜(AI-Nano-DIHM)对IC气溶胶的物理化学性质进行三维尺寸、形状、相和表面以及四维跟踪的定量分析。AI-Nano-DIHM与两个定制的人工智能驱动软件程序集成,能够在静态和动态条件下对空气和水环境中的BC、CNT和石墨进行自动分类和物理化学分析。我们的结果表明,AI-Nano-DIHM能够有效检测纳米和微米尺寸的IC颗粒,其在所有三个维度(宽度、高度和长度)上的范围为60纳米至200微米。使用高分辨率扫描/透射电子显微镜(HR-S/TEM)结合能量色散X射线光谱(EDS)对AI-Nano-DIHM获得的结果进行了验证。我们讨论了AI-Nano-DIHM作为一种经济高效、快速且准确的表征IC气溶胶的实时技术的巨大潜力,这对环境和健康相关结果具有重要意义。