Suppr超能文献

妇科肿瘤外科学中的发病率和死亡率风险评估:使用美国外科医师学院国家外科质量改进计划数据库。

Morbidity and Mortality Risk Assessment in Gynecologic Oncology Surgery Using the American College of Surgeons National Surgical Quality Improvement Program Database.

出版信息

Int J Gynecol Cancer. 2018 May;28(4):840-847. doi: 10.1097/IGC.0000000000001234.

Abstract

INTRODUCTION

Gynecologic oncology patients represent a distinct patient population with a variety of surgical risks. The American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database provides an opportunity to analyze large cohorts of patients over extended periods with high accuracy. Our goal was to develop a postoperative risk assessment calculator capable of providing a standardized, objective means of preoperatively identifying high-risk patients in the gynecologic oncology population.

METHODS

We queried the ACS NSQIP database for gynecologic oncology patients from 2005 to 2013. Multivariate logistic regression was performed to generate predictive models specific for 30-day postoperative mortality and major morbidity.

RESULTS

There were 12,831 patients with a primary gynecologic malignancy identified: 7847 uterine, 3366 adnexal, 1051 cervical, and 567 perineum cancers. In this cohort, 125 (0.97%) patients died, and 784 (6.11%) major morbidity events were recorded within 30 days of their surgery. For 30-day mortality, the mean calculated predictive probability was 0.128 (SD, 0.219) compared with 0.009 (SD, 0.027) in patients alive 30 days postoperatively (P < 0.0001). The mean predictive probability of major morbidity was 0.097 (SD, 0.095) compared with 0.059 (SD, 0.043) in patients who did not experience major morbidity 30 days postoperatively (P < 0.0001).

CONCLUSIONS

Using NSQIP data, these predictive models will help to determine patients at risk for 30-day mortality and major morbidity. Further clinical validation of these models is required.

摘要

简介

妇科肿瘤患者是一个具有多种手术风险的特殊患者群体。美国外科医师学院国家外科质量改进计划(ACS NSQIP)数据库提供了一个机会,可以在很长一段时间内以高精度分析大量患者。我们的目标是开发一种术后风险评估计算器,能够为妇科肿瘤患者提供一种标准化、客观的术前识别高危患者的方法。

方法

我们从 2005 年到 2013 年在 ACS NSQIP 数据库中查询了妇科肿瘤患者。使用多变量逻辑回归生成特定于 30 天术后死亡率和主要发病率的预测模型。

结果

共确定了 12831 例原发性妇科恶性肿瘤患者:7847 例子宫、3366 例附件、1051 例宫颈和 567 例会阴癌。在该队列中,有 125 例(0.97%)患者死亡,784 例(6.11%)患者在手术后 30 天内发生主要并发症。在 30 天死亡率方面,计算得出的预测概率平均值为 0.128(SD,0.219),而术后 30 天存活的患者为 0.009(SD,0.027)(P<0.0001)。主要发病率的预测概率平均值为 0.097(SD,0.095),而术后 30 天未发生主要发病率的患者为 0.059(SD,0.043)(P<0.0001)。

结论

使用 NSQIP 数据,这些预测模型将有助于确定 30 天死亡率和主要发病率高风险的患者。需要进一步对这些模型进行临床验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验