Suppr超能文献

受模拟退火启发的改进回溯搜索优化算法在约束工程优化问题中的应用。

Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems.

机构信息

School of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434023, China.

School of Software, East China Jiaotong University, Nanchang, Jiangxi 330013, China.

出版信息

Comput Intell Neurosci. 2018 Feb 13;2018:9167414. doi: 10.1155/2018/9167414. eCollection 2018.

Abstract

The backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA) to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor () is modified based on the Metropolis criterion in simulated annealing. The redesigned could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive -constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

摘要

回溯搜索优化算法(BSA)是一种基于种群的进化算法,用于解决数值优化问题。BSA 具有强大的全局探索能力,但其局部开发能力相对较差。这会影响算法的收敛速度。本文提出了一种受模拟退火启发的改进 BSA(BSAISA),以克服 BSA 的不足。在 BSAISA 中,根据模拟退火中的 Metropolis 准则对幅度控制因子()进行了修改。重新设计的可以根据迭代次数的增加自适应地减小,并且不会引入额外的参数。使用自适应-约束方法来处理严格的约束。我们在解决 13 个约束基准和 5 个工程设计问题时,将提出的 BSAISA 与 BSA 和其他知名算法的性能进行了比较。仿真结果表明,BSAISA 比 BSA 更有效,在收敛速度方面比其他知名算法更具竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6651/5831937/5b38c08115fd/CIN2018-9167414.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验