Suppr超能文献

一种求解全局优化和实际工程问题的新型人工电场算法。

A Novel Artificial Electric Field Algorithm for Solving Global Optimization and Real-World Engineering Problems.

作者信息

Hussien Abdelazim G, Pop Adrian, Kumar Sumit, Hashim Fatma A, Hu Gang

机构信息

Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden.

Faculty of Science, Fayoum University, Faiyum 63514, Egypt.

出版信息

Biomimetics (Basel). 2024 Mar 19;9(3):186. doi: 10.3390/biomimetics9030186.

Abstract

The Artificial Electric Field Algorithm (AEFA) stands out as a physics-inspired metaheuristic, drawing inspiration from Coulomb's law and electrostatic force; however, while AEFA has demonstrated efficacy, it can face challenges such as convergence issues and suboptimal solutions, especially in high-dimensional problems. To overcome these challenges, this paper introduces a modified version of AEFA, named mAEFA, which leverages the capabilities of Lévy flights, simulated annealing, and the Adaptive -best Mutation and Natural Survivor Method (NSM) mechanisms. While Lévy flights enhance exploration potential and simulated annealing improves search exploitation, the Adaptive -best Mutation and Natural Survivor Method (NSM) mechanisms are employed to add more diversity. The integration of these mechanisms in AEFA aims to expand its search space, enhance exploration potential, avoid local optima, and achieve improved performance, robustness, and a more equitable equilibrium between local intensification and global diversification. In this study, a comprehensive assessment of mAEFA is carried out, employing a combination of quantitative and qualitative measures, on a diverse range of 29 intricate CEC'17 constraint benchmarks that exhibit different characteristics. The practical compatibility of the proposed mAEFA is evaluated on five engineering benchmark problems derived from the civil, mechanical, and industrial engineering domains. Results from the mAEFA algorithm are compared with those from seven recently introduced metaheuristic algorithms using widely adopted statistical metrics. The mAEFA algorithm outperforms the LCA algorithm in all 29 CEC'17 test functions with 100% superiority and shows better results than SAO, GOA, CHIO, PSO, GSA, and AEFA in 96.6%, 96.6%, 93.1%, 86.2%, 82.8%, and 58.6% of test cases, respectively. In three out of five engineering design problems, mAEFA outperforms all the compared algorithms, securing second place in the remaining two problems. Results across all optimization problems highlight the effectiveness and robustness of mAEFA compared to baseline metaheuristics. The suggested enhancements in AEFA have proven effective, establishing competitiveness in diverse optimization problems.

摘要

人工电场算法(AEFA)是一种受物理启发的元启发式算法,其灵感来源于库仑定律和静电力;然而,尽管AEFA已证明具有有效性,但它可能面临诸如收敛问题和次优解等挑战,尤其是在高维问题中。为了克服这些挑战,本文引入了AEFA的改进版本,即mAEFA,它利用了 Lévy 飞行、模拟退火以及自适应最佳变异和自然幸存者方法(NSM)机制的能力。Lévy飞行增强了探索潜力,模拟退火改善了搜索利用,而自适应最佳变异和自然幸存者方法(NSM)机制则用于增加更多的多样性。这些机制在AEFA中的整合旨在扩大其搜索空间,增强探索潜力,避免局部最优,并实现性能提升、鲁棒性增强以及在局部强化和全局多样化之间实现更公平的平衡。在本研究中,采用定量和定性相结合的方法,对29个具有不同特征的复杂CEC'17约束基准进行了全面评估。在从土木、机械和工业工程领域衍生的五个工程基准问题上评估了所提出的mAEFA的实际兼容性。使用广泛采用的统计指标,将mAEFA算法的结果与最近引入的七种元启发式算法的结果进行了比较。mAEFA算法在所有29个CEC'17测试函数中均优于LCA算法,优势率达100%,并且在96.6%、96.6%、93.1%、86.2%、82.8%和58.6%的测试用例中分别比SAO、GOA、CHIO、PSO、GSA和AEFA表现更好。在五个工程设计问题中的三个问题上,mAEFA优于所有比较算法,在其余两个问题中获得第二名。所有优化问题的结果都突出了mAEFA与基线元启发式算法相比的有效性和鲁棒性。AEFA中建议的增强措施已证明是有效的,在各种优化问题中确立了竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4d/10968472/07b887b26de9/biomimetics-09-00186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验