Suppr超能文献

显著特征的有偏泛化驱动警告信号的进化。

Biased generalization of salient traits drives the evolution of warning signals.

机构信息

Department of Zoology, Stockholm University, 10691 Stockholm, Sweden

Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.

出版信息

Proc Biol Sci. 2018 Apr 25;285(1877). doi: 10.1098/rspb.2018.0283.

Abstract

The importance of receiver biases in shaping the evolution of many signalling systems is widely acknowledged. Here, we show that receiver bias can explain which traits evolve to become warning signals. For warning coloration, a generalization bias for a signalling trait can result from predators learning to discriminate unprofitable from profitable prey. However, because the colour patterns of prey are complex traits with multiple components, it is crucial to understand which of the many aspects of prey appearance evolve into signals. We provide experimental evidence that the more salient differences in prey traits give rise to greater generalization bias, corresponding to stronger selection towards trait exaggeration. Our results are based on experiments with domestic chickens as predators in a Skinner-box-like setting, and imply that the difference in appearance between profitable and unprofitable prey that is most rapidly learnt produces the greatest generalization bias. As a consequence, certain salient traits of unprofitable prey are selected towards exaggeration to even higher salience, driving the evolution of warning coloration. This general idea may also help to explain the evolution of many other striking signalling traits found in nature.

摘要

接收器偏差在塑造许多信号系统的进化方面的重要性已得到广泛认可。在这里,我们表明接收器偏差可以解释哪些特征进化成警告信号。对于警告色,信号特征的概括偏差可能是由于捕食者学会区分无利可图和有利可图的猎物而导致的。然而,由于猎物的颜色模式是具有多个组成部分的复杂特征,因此了解猎物外观的许多方面中哪些方面进化成信号至关重要。我们提供了实验证据表明,猎物特征中更明显的差异会导致更大的概括偏差,这对应于对特征夸张的更强选择。我们的研究结果基于在类似于斯金纳盒的设置中以家鸡为捕食者的实验,这意味着最快速学习的有利和无利猎物之间的外观差异产生最大的概括偏差。因此,无利猎物的某些明显特征会被选择向更高的显著性夸张,从而推动警告色的进化。这个一般性的想法也可能有助于解释自然界中许多其他引人注目的信号特征的进化。

相似文献

1
Biased generalization of salient traits drives the evolution of warning signals.
Proc Biol Sci. 2018 Apr 25;285(1877). doi: 10.1098/rspb.2018.0283.
2
Warning signals evolve to disengage Batesian mimics.
Evolution. 2009 Jan;63(1):256-67. doi: 10.1111/j.1558-5646.2008.00509.x. Epub 2008 Sep 11.
3
Do unprofitable prey evolve traits that profitable prey find difficult to exploit?
Proc Biol Sci. 2005 Nov 22;272(1579):2441-7. doi: 10.1098/rspb.2005.3229.
4
How do predators generalize warning signals in simple and complex prey communities? Insights from a videogame.
Proc Biol Sci. 2020 Feb 26;287(1921):20200014. doi: 10.1098/rspb.2020.0014. Epub 2020 Feb 19.
5
The evolution of warning signals as reliable indicators of prey defense.
Am Nat. 2003 Oct;162(4):377-89. doi: 10.1086/378047. Epub 2003 Oct 16.
7
Evidence for a peak-shift in predator generalization among aposematic prey.
Proc Biol Sci. 1996 Oct 22;263(1375):1329-34. doi: 10.1098/rspb.1996.0195.
8
Multi-trait mimicry and the relative salience of individual traits.
Proc Biol Sci. 2015 Nov 7;282(1818):20152127. doi: 10.1098/rspb.2015.2127.
9
Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey.
Evolution. 2008 Nov;62(11):2913-21. doi: 10.1111/j.1558-5646.2008.00485.x. Epub 2008 Aug 26.
10
The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration.
Evolution. 2000 Jun;54(3):751-63. doi: 10.1111/j.0014-3820.2000.tb00077.x.

引用本文的文献

1
Interactions between color and gloss in iridescent camouflage.
Behav Ecol. 2023 Jun 14;34(5):751-758. doi: 10.1093/beheco/arad050. eCollection 2023 Sep-Oct.
2
Field evidence for colour mimicry overshadowing morphological mimicry.
J Anim Ecol. 2021 Mar;90(3):698-709. doi: 10.1111/1365-2656.13404. Epub 2020 Dec 20.
3
Generalization of learned preferences covaries with behavioral flexibility in red junglefowl chicks.
Behav Ecol. 2019 Sep-Oct;30(5):1375-1381. doi: 10.1093/beheco/arz088. Epub 2019 Jul 13.
4
Weak warning signals can persist in the absence of gene flow.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19037-19045. doi: 10.1073/pnas.1901872116. Epub 2019 Sep 3.

本文引用的文献

1
Learning of salient prey traits explains Batesian mimicry evolution.
Evolution. 2018 Mar;72(3):531-539. doi: 10.1111/evo.13418. Epub 2018 Jan 30.
2
Stabilizing selection on individual pattern elements of aposematic signals.
Proc Biol Sci. 2017 Aug 30;284(1861). doi: 10.1098/rspb.2017.0926.
3
NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION.
Evolution. 1976 Jun;30(2):314-334. doi: 10.1111/j.1558-5646.1976.tb00911.x.
4
The birth of aposematism: High phenotypic divergence and low genetic diversity in a young clade of poison frogs.
Mol Phylogenet Evol. 2017 Apr;109:283-295. doi: 10.1016/j.ympev.2016.12.035. Epub 2017 Jan 13.
5
Yellow and the Novel Aposematic Signal, Red, Protect Delias Butterflies from Predators.
PLoS One. 2017 Jan 6;12(1):e0168243. doi: 10.1371/journal.pone.0168243. eCollection 2017.
6
Aposematism: balancing salience and camouflage.
Biol Lett. 2016 Aug;12(8). doi: 10.1098/rsbl.2016.0335.
7
Phylogeography and evolution of the Red Salamander (Pseudotriton ruber).
Mol Phylogenet Evol. 2016 May;98:97-110. doi: 10.1016/j.ympev.2016.01.016. Epub 2016 Feb 9.
8
Multi-trait mimicry and the relative salience of individual traits.
Proc Biol Sci. 2015 Nov 7;282(1818):20152127. doi: 10.1098/rspb.2015.2127.
9
Are aposematic signals honest? A review.
J Evol Biol. 2015 Sep;28(9):1583-99. doi: 10.1111/jeb.12676. Epub 2015 Jul 4.
10
Bird colour vision: behavioural thresholds reveal receptor noise.
J Exp Biol. 2015 Jan 15;218(Pt 2):184-93. doi: 10.1242/jeb.111187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验