Suppr超能文献

使用反向传播神经网络自动检测生物膜内的扩散模式。

Automatic detection of diffusion modes within biological membranes using back-propagation neural network.

作者信息

Dosset Patrice, Rassam Patrice, Fernandez Laurent, Espenel Cedric, Rubinstein Eric, Margeat Emmanuel, Milhiet Pierre-Emmanuel

机构信息

Inserm, U1054, Montpellier, France.

Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France.

出版信息

BMC Bioinformatics. 2016 May 4;17(1):197. doi: 10.1186/s12859-016-1064-z.

Abstract

BACKGROUND

Single particle tracking (SPT) is nowadays one of the most popular technique to probe spatio-temporal dynamics of proteins diffusing within the plasma membrane. Indeed membrane components of eukaryotic cells are very dynamic molecules and can diffuse according to different motion modes. Trajectories are often reconstructed frame-by-frame and dynamic properties often evaluated using mean square displacement (MSD) analysis. However, to get statistically significant results in tracking experiments, analysis of a large number of trajectories is required and new methods facilitating this analysis are still needed.

RESULTS

In this study we developed a new algorithm based on back-propagation neural network (BPNN) and MSD analysis using a sliding window. The neural network was trained and cross validated with short synthetic trajectories. For simulated and experimental data, the algorithm was shown to accurately discriminate between Brownian, confined and directed diffusion modes within one trajectory, the 3 main of diffusion encountered for proteins diffusing within biological membranes. It does not require a minimum number of observed particle displacements within the trajectory to infer the presence of multiple motion states. The size of the sliding window was small enough to measure local behavior and to detect switches between different diffusion modes for segments as short as 20 frames. It also provides quantitative information from each segment of these trajectories. Besides its ability to detect switches between 3 modes of diffusion, this algorithm is able to analyze simultaneously hundreds of trajectories with a short computational time.

CONCLUSION

This new algorithm, implemented in powerful and handy software, provides a new conceptual and versatile tool, to accurately analyze the dynamic behavior of membrane components.

摘要

背景

单粒子追踪(SPT)如今是探测蛋白质在质膜内扩散的时空动态的最流行技术之一。真核细胞的膜成分确实是非常动态的分子,并且可以根据不同的运动模式进行扩散。轨迹通常逐帧重建,动态特性通常使用均方位移(MSD)分析来评估。然而,为了在追踪实验中获得具有统计学意义的结果,需要分析大量轨迹,并且仍然需要促进这种分析的新方法。

结果

在本研究中,我们开发了一种基于反向传播神经网络(BPNN)和使用滑动窗口的MSD分析的新算法。该神经网络使用短的合成轨迹进行训练和交叉验证。对于模拟数据和实验数据,该算法被证明能够在一条轨迹内准确区分布朗扩散、受限扩散和定向扩散模式,这是蛋白质在生物膜内扩散时遇到的三种主要扩散模式。它不需要轨迹内观察到的粒子位移的最小数量来推断多种运动状态的存在。滑动窗口的大小足够小,能够测量局部行为并检测短至20帧的片段中不同扩散模式之间的转换。它还从这些轨迹的每个片段提供定量信息。除了能够检测三种扩散模式之间的转换外,该算法还能够在短计算时间内同时分析数百条轨迹。

结论

这种在强大且方便的软件中实现的新算法提供了一种新的概念性通用工具,用于准确分析膜成分的动态行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e29c/4855490/0cd91d71a475/12859_2016_1064_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验