Di Rienzo Carmine, Piazza Vincenzo, Gratton Enrico, Beltram Fabio, Cardarelli Francesco
1] Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy [2] NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
Nat Commun. 2014 Dec 23;5:5891. doi: 10.1038/ncomms6891.
The translational motion of molecules in cells deviates from what is observed in dilute solutions. Theoretical models provide explanations for this effect but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive test of the nature of the translational motion in cells is missing owing to the lack of techniques capable of probing crowding with the required temporal and spatial resolution. Here we show that fluorescence-fluctuation analysis of raster scans at variable timescales can provide this information. By using green fluorescent proteins in cells, we measure protein motion at the unprecedented timescale of 1 μs, unveiling unobstructed Brownian motion from 25 to 100 nm, and partially suppressed diffusion above 100 nm. Furthermore, experiments on model systems attribute this effect to the presence of relatively immobile structures rather than to diffusing crowding agents. We discuss the implications of these results for intracellular processes.
细胞中分子的平移运动与在稀溶液中观察到的情况有所不同。理论模型对这种效应提供了解释,但其预测结果极大地依赖于为大分子拥挤剂假定的纳米级组织。由于缺乏能够以所需的时间和空间分辨率探测拥挤情况的技术,因此尚未对细胞中平移运动的性质进行决定性测试。在此,我们表明,在可变时间尺度上对光栅扫描进行荧光涨落分析可以提供此信息。通过在细胞中使用绿色荧光蛋白,我们以前所未有的1微秒时间尺度测量蛋白质运动,揭示了25至100纳米范围内畅通无阻的布朗运动,以及100纳米以上部分受抑制的扩散。此外,对模型系统的实验将这种效应归因于相对固定结构的存在,而非扩散的拥挤剂。我们讨论了这些结果对细胞内过程的影响。