Suppr超能文献

KDiamend:一个用于在疾病分子生态网络中检测关键驱动因素的软件包。

KDiamend: a package for detecting key drivers in a molecular ecological network of disease.

作者信息

Lyu Mengxuan, Chen Jiaxing, Jiang Yiqi, Dong Wei, Fang Zhou, Li Shuaicheng

机构信息

Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.

出版信息

BMC Syst Biol. 2018 Apr 11;12(Suppl 1):5. doi: 10.1186/s12918-018-0531-8.

Abstract

BACKGROUND

Microbial abundance profiles are applied widely to understand diseases from the aspect of microbial communities. By investigating the abundance associations of species or genes, we can construct molecular ecological networks (MENs). The MENs are often constructed by calculating the Pearson correlation coefficient (PCC) between genes. In this work, we also applied multimodal mutual information (MMI) to construct MENs. The members which drive the concerned MENs are referred to as key drivers.

RESULTS

We proposed a novel method to detect the key drivers. First, we partitioned the MEN into subnetworks. Then we identified the most pertinent subnetworks to the disease by measuring the correlation between the abundance pattern and the delegated phenotype-the variable representing the disease phenotypes. Last, for each identified subnetwork, we detected the key driver by PageRank. We developed a package named KDiamend and applied it to the gut and oral microbial data to detect key drivers for Type 2 diabetes (T2D) and Rheumatoid Arthritis (RA). We detected six T2D-relevant subnetworks and three key drivers of them are related to the carbohydrate metabolic process. In addition, we detected nine subnetworks related to RA, a disease caused by compromised immune systems. The extracted subnetworks include InterPro matches (IPRs) concerned with immunoglobulin, Sporulation, biofilm, Flaviviruses, bacteriophage, etc., while the development of biofilms is regarded as one of the drivers of persistent infections.

CONCLUSION

KDiamend is feasible to detect key drivers and offers insights to uncover the development of diseases. The package is freely available at http://www.deepomics.org/pipelines/3DCD6955FEF2E64A/ .

摘要

背景

微生物丰度谱被广泛应用于从微生物群落角度理解疾病。通过研究物种或基因的丰度关联,我们可以构建分子生态网络(MENs)。MENs通常通过计算基因之间的皮尔逊相关系数(PCC)来构建。在这项工作中,我们还应用多模态互信息(MMI)来构建MENs。驱动相关MENs的成员被称为关键驱动因素。

结果

我们提出了一种检测关键驱动因素的新方法。首先,我们将MEN划分为子网。然后,通过测量丰度模式与代表疾病表型的委托表型(即表示疾病表型的变量)之间的相关性,确定与疾病最相关的子网。最后,对于每个确定的子网,我们通过PageRank检测关键驱动因素。我们开发了一个名为KDiamend的软件包,并将其应用于肠道和口腔微生物数据,以检测2型糖尿病(T2D)和类风湿性关节炎(RA)的关键驱动因素。我们检测到六个与T2D相关的子网,其中三个关键驱动因素与碳水化合物代谢过程有关。此外,我们检测到九个与RA相关的子网,RA是一种由免疫系统受损引起的疾病。提取的子网包括与免疫球蛋白、芽孢形成、生物膜、黄病毒、噬菌体等相关的InterPro匹配(IPRs),而生物膜的形成被认为是持续性感染的驱动因素之一。

结论

KDiamend在检测关键驱动因素方面是可行的,并为揭示疾病的发展提供了见解。该软件包可在http://www.deepomics.org/pipelines/3DCD6955FEF2E64A/免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5626/5907152/80050c129e6a/12918_2018_531_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验