Suppr超能文献

双相情感障碍精神病性症状与精神分裂症全基因组显著遗传位点之间关系的数据驱动研究。

A data-driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genome-wide significant genetic loci.

作者信息

Leonenko Ganna, Di Florio Arianna, Allardyce Judith, Forty Liz, Knott Sarah, Jones Lisa, Gordon-Smith Katherine, Owen Michael J, Jones Ian, Walters James, Craddock Nick, O'Donovan Michael C, Escott-Price Valentina

机构信息

MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom.

Department of Psychological Medicine, University of Worcester, Worcester, United Kingdom.

出版信息

Am J Med Genet B Neuropsychiatr Genet. 2018 Jun;177(4):468-475. doi: 10.1002/ajmg.b.32635. Epub 2018 Apr 19.

Abstract

The etiologies of bipolar disorder (BD) and schizophrenia include a large number of common risk alleles, many of which are shared across the disorders. BD is clinically heterogeneous and it has been postulated that the pattern of symptoms is in part determined by the particular risk alleles carried, and in particular, that risk alleles also confer liability to schizophrenia influence psychotic symptoms in those with BD. To investigate links between psychotic symptoms in BD and schizophrenia risk alleles we employed a data-driven approach in a genotyped and deeply phenotyped sample of subjects with BD. We used sparse canonical correlation analysis (sCCA) (Witten, Tibshirani, & Hastie, ) to analyze 30 psychotic symptoms, assessed with the OPerational CRITeria checklist, and 82 independent genome-wide significant single nucleotide polymorphisms (SNPs) identified by the Schizophrenia Working group of the Psychiatric Genomics Consortium for which we had data in our BD sample (3,903 subjects). As a secondary analysis, we applied sCCA to larger groups of SNPs, and also to groups of symptoms defined according to a published factor analyses of schizophrenia. sCCA analysis based on individual psychotic symptoms revealed a significant association (p = .033), with the largest weights attributed to a variant on chromosome 3 (rs11411529), chr3:180594593, build 37) and delusions of influence, bizarre behavior and grandiose delusions. sCCA analysis using the same set of SNPs supported association with the same SNP and the group of symptoms defined "factor 3" (p = .012). A significant association was also observed to the "factor 3" phenotype group when we included a greater number of SNPs that were less stringently associated with schizophrenia; although other SNPs contributed to the significant multivariate association result, the greatest weight remained assigned to rs11411529. Our results suggest that the canonical correlation is a useful tool to explore phenotype-genotype relationships. To the best of our knowledge, this is the first study to apply this approach to complex, polygenic psychiatric traits. The sparse canonical correlation approach offers the potential to include a larger number of fine-grained systematic descriptors, and to include genetic markers associated with other disorders that are genetically correlated with BD.

摘要

双相情感障碍(BD)和精神分裂症的病因包括大量常见风险等位基因,其中许多在这两种疾病中是共有的。BD在临床上具有异质性,据推测症状模式部分由携带的特定风险等位基因决定,特别是风险等位基因也会使BD患者易患精神分裂症,并影响其精神病性症状。为了研究BD患者的精神病性症状与精神分裂症风险等位基因之间的联系,我们在一个经过基因分型和深度表型分析的BD患者样本中采用了数据驱动的方法。我们使用稀疏典型相关分析(sCCA)(Witten、Tibshirani和Hastie, )来分析30种精神病性症状(使用操作标准检查表进行评估),以及由精神疾病基因组学联盟精神分裂症工作组鉴定的82个独立的全基因组显著单核苷酸多态性(SNP),我们在BD样本(3903名受试者)中有这些数据。作为次要分析,我们将sCCA应用于更大的SNP组,以及根据已发表的精神分裂症因子分析定义的症状组。基于个体精神病性症状的sCCA分析显示出显著关联(p = 0.033),最大权重归因于3号染色体上的一个变异(rs11411529,chr3:180594593,构建版本37)以及被控制感妄想、怪异行为和夸大妄想。使用同一组SNP的sCCA分析支持与同一SNP以及定义为“因子3”的症状组存在关联(p = 0.012)。当我们纳入更多与精神分裂症关联不太严格的SNP时,也观察到与“因子3”表型组存在显著关联;尽管其他SNP对显著的多变量关联结果有贡献,但最大权重仍归于rs11411529。我们的结果表明典型相关是探索表型 - 基因型关系的有用工具。据我们所知,这是首次将这种方法应用于复杂的多基因精神疾病性状的研究。稀疏典型相关方法有可能纳入更多细粒度的系统描述符,并纳入与其他与BD存在遗传相关性的疾病相关的遗传标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67c8/6001555/e8f964a51bd2/AJMG-177-468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验