Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Mol Biol Evol. 2018 Jul 1;35(7):1638-1652. doi: 10.1093/molbev/msy052.
The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.
齿舌是软体动物的主要觅食器官和独特特征。然而,与其他创新,包括软体动物的壳,齿舌形成的遗传基础实际上是未知的。在这里,我们使用胎生淡水蜗牛 Tylomelania sarasinorum 展示了第一个齿舌形成组织转录组,并将其与足部组织和同一物种的贝壳形成套膜进行了比较。我们结合差异表达、功能富集和系统发育分析,确定了这三种组织的特定和共同的遗传基础,以及它们的主要功能和进化起源。齿舌形成组织的基因表达非常独特,但与套膜相比,与足部更为相似。一般来说,齿舌和贝壳形成的遗传基础是由预先存在的基因的新协调和新基因的连续进化塑造的。起源于软体动物起源的新基因,特别是在进化过程中发挥了重要作用。我们研究中具有齿舌特异性表达的基因通常也在其他担轮动物硬组织结构的形成过程中表达,如刚毛(hes1,arx)、小刺(gbx)、软体动物的壳(gbx,heph)和腕足动物的壳(heph),表明基因的共同作用对于硬组织结构的形成很重要。最后,我们研究中具有齿舌特异性表达的一种具有肌球蛋白马达结构域的 Lophotrochozoa 特异性几丁质合酶(CS-MD),在软体动物和腕足动物壳形成过程中表达,具有齿舌特异性表达。CS-MD 可能促进了复杂的几丁质结构的构建,并指出了分子创新的潜力,以促进不同形态创新的进化。