Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark.
Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
New Phytol. 2018 Jul;219(1):122-134. doi: 10.1111/nph.15149. Epub 2018 Apr 19.
The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology.
硅藻类二氧化硅外壳的光学性质激发了光子学和纳米技术研究。由于缺乏关于在更自然条件下外壳光学性质的信息,因此光与外壳纳米结构的相互作用是否也会影响硅藻光合作用仍不清楚。在这里,我们证明了水中小壳的光学性质会影响有孔虫硅藻(Coscinodiscus granii)活细胞的光捕获和光合作用。局部点照明周围的微尺度细胞光合作用映射表明叶绿体与壳壁之间存在光学耦合。具有三层结构的 C. granii 壳的光子结构促进了光的再分配和远离直接照明区域的细胞区域的有效光合作用。壳两侧不同的多孔结构实现了蓝光的光子俘获和前向散射,从而增加了细胞内的光合有效辐射。因此,硅藻外壳的光子结构改变了细胞内的光场,这对硅藻光生物学有影响。