Suppr超能文献

基于可分离字典的弥散磁共振成像的联合空间角度稀疏编码。

Joint spatial-angular sparse coding for dMRI with separable dictionaries.

机构信息

Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA.

Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Med Image Anal. 2018 Aug;48:25-42. doi: 10.1016/j.media.2018.05.002. Epub 2018 May 25.

Abstract

Diffusion MRI (dMRI) provides the ability to reconstruct neuronal fibers in the brain, in vivo, by measuring water diffusion along angular gradient directions in q-space. High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation than the popularly used diffusion tensor imaging, but the high number of samples needed to estimate diffusivity requires longer patient scan times. To accelerate dMRI, compressed sensing (CS) has been utilized by exploiting a sparse dictionary representation of the data, discovered through sparse coding. The sparser the representation, the fewer samples are needed to reconstruct a high resolution signal with limited information loss, and so an important area of research has focused on finding the sparsest possible representation of dMRI. Current reconstruction methods however, rely on an angular representation per voxel with added spatial regularization, and so, for non-zero signals, one is required to have at least one non-zero coefficient per voxel. This means that the global level of sparsity must be greater than the number of voxels. In contrast, we propose a joint spatial-angular representation of dMRI that will allow us to achieve levels of global sparsity that are below the number of voxels. A major challenge, however, is the computational complexity of solving a global sparse coding problem over large-scale dMRI. In this work, we present novel adaptations of popular sparse coding algorithms that become better suited for solving large-scale problems by exploiting spatial-angular separability. Our experiments show that our method achieves significantly sparser representations of HARDI than is possible by the state of the art.

摘要

扩散磁共振成像(dMRI)通过在 q 空间中测量沿角度梯度方向的水分子扩散,提供了在体重建大脑神经元纤维的能力。高角度分辨率扩散成像(HARDI)可以比常用的扩散张量成像更好地估计纤维方向,但估计扩散率所需的大量样本需要更长的患者扫描时间。为了加速 dMRI,压缩感知(CS)已通过利用数据的稀疏字典表示来实现,该表示是通过稀疏编码发现的。表示越稀疏,重建具有有限信息丢失的高分辨率信号所需的样本就越少,因此一个重要的研究领域集中在寻找 dMRI 的尽可能稀疏的表示上。然而,当前的重建方法依赖于每个体素的角度表示,并增加了空间正则化,因此,对于非零信号,每个体素需要至少有一个非零系数。这意味着全局稀疏度必须大于体素数量。相比之下,我们提出了一种 dMRI 的联合空间-角度表示方法,该方法将使我们能够实现低于体素数量的全局稀疏度水平。然而,一个主要挑战是解决大规模 dMRI 中的全局稀疏编码问题的计算复杂性。在这项工作中,我们提出了流行的稀疏编码算法的新颖改编,通过利用空间-角度可分离性,使这些算法更适合解决大规模问题。我们的实验表明,与最先进的方法相比,我们的方法可以实现 HARDI 更稀疏的表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验