School of Information and Electronics, Beijing Institute of Technology, Beijing, China.
Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Med Image Anal. 2021 Jul;71:102085. doi: 10.1016/j.media.2021.102085. Epub 2021 Apr 21.
Super-resolvedq-space deep learning (SR-q-DL) has been developed to estimate high-resolution (HR) tissue microstructure maps from low-quality diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients and low spatial resolution, where deep networks are designed for the estimation. However, existing methods do not exploit HR information from other modalities, which are generally acquired together with dMRI and could provide additional useful information for HR tissue microstructure estimation. In this work, we extend SR-q-DL and propose multimodal SR-q-DL, where information in low-resolution (LR) dMRI is combined with HR information from another modality for HR tissue microstructure estimation. Because the HR modality may not be as sensitive to tissue microstructure as dMRI, direct concatenation of multimodal information does not necessarily lead to improved estimation performance. Since existing deep networks for HR tissue microstructure estimation are patch-based and use redundant information in the spatial domain to enhance the spatial resolution, the HR information in the other modality could inform the deep networks about what input voxels are relevant for the computation of tissue microstructure. Thus, we propose to incorporate the HR information from the HR modality by designing an attention module that guides the computation of HR tissue microstructure from LR dMRI. Specifically, the attention module is integrated with the patch-based SR-q-DL framework that exploits the sparsity of diffusion signals. The sparse representation of the LR diffusion signals in the input patch is first computed with a network component that unrolls an iterative process for sparse reconstruction. Then, the proposed attention module computes a relevance map from the HR modality with sequential convolutional layers. The relevance map indicates the relevance of the LR sparse representation at each voxel for computing the patch of HR tissue microstructure. The relevance is applied to the LR sparse representation with voxelwise multiplication, and the weighted LR sparse representation is used to compute HR tissue microstructure with another network component that allows resolution enhancement. All weights in the proposed network for multimodal SR-q-DL are jointly learned and the estimation is end-to-end. To evaluate the proposed method, we performed experiments on brain dMRI scans together with images of additional HR modalities. In the experiments, the proposed method was applied to the estimation of tissue microstructure measures for different datasets and advanced biophysical models, where the benefit of incorporating multimodal information using the proposed method is shown.
超分辨率 q 空间深度学习(SR-q-DL)已被开发用于从低质量扩散磁共振成像(dMRI)扫描中估计高分辨率(HR)组织微观结构图谱,这些扫描使用较少的扩散梯度和较低的空间分辨率获得,其中深度网络用于估计。然而,现有的方法没有利用来自其他模态的 HR 信息,这些信息通常与 dMRI 一起获得,并且可以为 HR 组织微观结构估计提供额外的有用信息。在这项工作中,我们扩展了 SR-q-DL 并提出了多模态 SR-q-DL,其中将低分辨率(LR)dMRI 中的信息与另一种模态的 HR 信息结合起来用于 HR 组织微观结构估计。由于 HR 模态可能不像 dMRI 那样对组织微观结构敏感,因此直接串联多模态信息不一定会提高估计性能。由于现有的用于 HR 组织微观结构估计的深度网络是基于补丁的,并且使用空间域中的冗余信息来增强空间分辨率,因此其他模态中的 HR 信息可以告知深度网络输入体素对于计算组织微观结构的相关性。因此,我们通过设计一个注意力模块来合并来自 HR 模态的 HR 信息,该模块通过稀疏的扩散信号来指导从 LR dMRI 计算 HR 组织微观结构。具体来说,注意力模块与基于补丁的 SR-q-DL 框架集成在一起,该框架利用了扩散信号的稀疏性。首先,使用展开迭代稀疏重建过程的网络组件计算输入补丁中的 LR 扩散信号的稀疏表示。然后,所提出的注意力模块使用顺序卷积层从 HR 模态计算相关性图。相关性图指示每个体素的 LR 稀疏表示对于计算 HR 组织微观结构补丁的相关性。相关性通过体素乘法应用于 LR 稀疏表示,并且使用允许分辨率增强的另一个网络组件来计算加权的 LR 稀疏表示。多模态 SR-q-DL 中提出的网络的所有权重都是联合学习的,并且估计是端到端的。为了评估所提出的方法,我们在大脑 dMRI 扫描以及其他 HR 模态的图像上进行了实验。在实验中,将所提出的方法应用于不同数据集和高级生物物理模型的组织微观结构测量的估计中,展示了使用所提出的方法结合多模态信息的益处。