INM-Leibniz Institute for New Materials, 66123, Saarbrücken, Germany.
Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany.
Chemistry. 2018 Aug 22;24(47):12143-12153. doi: 10.1002/chem.201800772. Epub 2018 Jun 8.
Next generation electrochemical energy storage materials that enable a combination of high specific energy, specific power, and cycling stability can be obtained by a hybridization approach. This involves electrode materials that contain carbon and metal oxide phases linked on a nanoscopic level and combine characteristics of supercapacitors and batteries. The combination of the components requires careful design to create synergistic effects for an increased electrochemical performance. Improved understanding of the role of carbon as a substrate has advanced the power handling and cycling stability of hybrid materials significantly in recent years. This Concept outlines different design strategies for the design of hybrid electrode materials: (1) the deposition of metal oxides on readily existing carbon substrates and (2) co-synthesizing both carbon and metal oxide phase during the synthesis procedure. The implications of carbon properties on the hybrid material's structure and performance will be assessed and the impact of the hybrid electrode architecture will be analyzed. The advantages and disadvantages of all approaches are highlighted and strategies to overcome the latter will be proposed.
通过杂交方法可以获得能够结合高比能、比功率和循环稳定性的下一代电化学储能材料。这涉及到在纳米尺度上连接碳和金属氧化物相的电极材料,并结合超级电容器和电池的特性。组件的组合需要精心设计,以产生协同效应,从而提高电化学性能。近年来,对碳作为基质的作用的深入了解极大地提高了混合材料的功率处理能力和循环稳定性。本综述概述了设计混合电极材料的不同设计策略:(1) 将金属氧化物沉积在现成的碳基底上,以及(2) 在合成过程中同时共合成碳和金属氧化物相。将评估碳特性对混合材料结构和性能的影响,并分析混合电极结构的影响。突出了所有方法的优缺点,并提出了克服后者的策略。