Li Long, Wang Qinggong
Q. Xuesen Laboratory of Space Technology, NO. 104 Youyi Road, Haidian District, Beijing, 100094, China.
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong.
Small. 2018 May;14(21):e1800369. doi: 10.1002/smll.201800369. Epub 2018 Apr 19.
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management.
离子液体对于能量转换、海水淡化、药物输送以及芯片实验室设备至关重要。在纳米尺度限制和复杂物理场中的离子传输仍然难以捉摸。在此,利用具有异质表面性质的纳米通道开发了一种纳米流体系统,以研究不同温度下离子的传输特性。在对称温度梯度下观察到稳定的离子电流,这相当于利用废热(如电子芯片和太阳能电池板)发电。电流随温度梯度线性增加,随通道尺寸非线性增加。针对这一现象评估了温度和通道性质对离子运动的贡献。这些发现为多物理场中受限离子液体的研究提供了见解,并暗示了在热能转换、温度传感器和芯片级热管理方面的应用。