Suppr超能文献

一种用于绿色物联网(IoT)的节能压缩图像编码。

An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).

作者信息

Li Ran, Duan Xiaomeng, Li Xu, He Wei, Li Yanling

机构信息

School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China.

出版信息

Sensors (Basel). 2018 Apr 17;18(4):1231. doi: 10.3390/s18041231.

Abstract

Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

摘要

针对绿色物联网的低能耗需求,本文提出了一种节能型压缩图像编码方案,该方案基于压缩感知(CS)理论提供了压缩编码器和实时解码器。压缩编码器基于块梯度场对每个图像块进行自适应测量,该梯度场对块稀疏度分布进行建模,实时解码器通过最小均方误差(MMSE)准则学习得到的投影矩阵对每个图像块进行线性重构。编码器和解码器都具有较低的计算复杂度,因此只消耗少量能量。实验结果表明,与传统方法相比,该方案不仅具有较低的编码和解码复杂度,而且还提供了良好的客观和主观重构质量。特别是,它比JPEG具有更好的时间-失真性能。因此,所提出的压缩图像编码是一种潜在的绿色物联网节能方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7d3/5948825/612a8847e892/sensors-18-01231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验