Laboratório de Doenças Parasitárias, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
Laboratório de Monitoramento Epidemiológico de Grandes Empreendimentos, Fiocruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
Parasit Vectors. 2018 Apr 19;11(1):256. doi: 10.1186/s13071-018-2844-2.
Extra-Amazonian malaria mortality is 60 times higher than the Amazon malaria mortality. Imported cases correspond to approximately 90% of extra-Amazonian cases. Imported malaria could be a major problem if it occurs in areas with receptivity, because it can favor the occurrence of outbreaks or reintroductions of malaria in those areas. This study aimed to model territorial receptivity for malaria to serve as an entomological surveillance tool in the State of Rio de Janeiro, Brazil. Geomorphology, rainfall, temperature, and vegetation layers were used in the AHP process for the receptivity stratification of Rio de Janeiro State territory.
The model predicted five receptivity classes: very low, low, medium, high and very high. The 'very high' class is the most important in the receptivity model, corresponding to areas with optimal environmental and climatological conditions to provide suitable larval habitats for Anopheles (Nyssorhynchus) vectors. This receptivity class covered 497.14 km or 1.18% of the state's area. The 'high' class covered the largest area, 17,557.98 km, or 41.62% of the area of Rio de Janeiro State.
We used freely available databases for modeling the distribution of receptive areas for malaria transmission in the State of Rio de Janeiro. This was a new and low-cost approach to support entomological surveillance efforts. Health workers in 'very high' and 'high' receptivity areas should be prepared to diagnose all febrile individuals and determine the cause of the fever, including malaria. Each malaria case must be treated and epidemiological studies must be conducted to prevent the reintroduction of the disease.
亚马孙以外地区的疟疾死亡率比亚马孙地区高 60 倍。输入性疟疾病例约占亚马孙以外地区疟疾病例的 90%。如果输入性疟疾发生在易感染地区,可能会成为一个主要问题,因为它可能导致疟疾在这些地区爆发或重新出现。本研究旨在对疟疾的地域易感性进行建模,作为巴西里约热内卢州的一项昆虫学监测工具。在层次分析法(AHP)中,使用地形学、降雨量、温度和植被层来对里约热内卢州的地域易感性进行分层。
该模型预测了五个易感性等级:极低、低、中、高和极高。“极高”类在易感性模型中最重要,对应于为疟蚊(Nyssorhynchus)传播媒介提供合适幼虫栖息地的最佳环境和气候条件的区域。该易感性类覆盖了该州 497.14 平方公里,即 1.18%的面积。“高”类覆盖的面积最大,为 17557.98 平方公里,即里约热内卢州面积的 41.62%。
我们使用了免费提供的数据库来模拟里约热内卢州疟疾传播的易感性区域分布。这是一种新的、低成本的方法,可以支持昆虫学监测工作。在高和极高易感性地区的卫生工作者应准备好诊断所有发热的个体,并确定发热的原因,包括疟疾。每个疟疾病例都必须得到治疗,并进行流行病学研究,以防止疾病的重新出现。