Suppr超能文献

巨型质膜囊泡:一种用于探究药物及其他条件对膜结构域稳定性影响的实验工具。

Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability.

作者信息

Gerstle Zoe, Desai Rohan, Veatch Sarah L

机构信息

University of Michigan, Ann Arbor, MI, United States.

University of Michigan, Ann Arbor, MI, United States.

出版信息

Methods Enzymol. 2018;603:129-150. doi: 10.1016/bs.mie.2018.02.007. Epub 2018 Mar 15.

Abstract

Giant plasma membrane vesicles (GPMVs) are isolated directly from living cells and provide an alternative to vesicles constructed of synthetic or purified lipids as an experimental model system for use in a wide range of assays. GPMVs capture much of the compositional protein and lipid complexity of intact cell plasma membranes, are filled with cytoplasm, and are free from contamination with membranes from internal organelles. GPMVs often exhibit a miscibility transition below the growth temperature of their parent cells. GPMVs labeled with a fluorescent protein or lipid analog appear uniform on the micron-scale when imaged above the miscibility transition temperature, and separate into coexisting liquid domains with differing membrane compositions and physical properties below this temperature. The presence of this miscibility transition in isolated GPMVs suggests that a similar phase-like heterogeneity occurs in intact plasma membranes under growth conditions, albeit on smaller length scales. In this context, GPMVs provide a simple and controlled experimental system to explore how drugs and other environmental conditions alter the composition and stability of phase-like domains in intact cell membranes. This chapter describes methods to generate and isolate GPMVs from adherent mammalian cells and to interrogate their miscibility transition temperatures using fluorescence microscopy.

摘要

巨质膜囊泡(GPMVs)直接从活细胞中分离得到,为在各种检测中用作实验模型系统的由合成或纯化脂质构建的囊泡提供了一种替代方案。GPMVs保留了完整细胞质膜在组成上的蛋白质和脂质复杂性,内部充满细胞质,且不受来自内部细胞器膜的污染。GPMVs在其亲本细胞的生长温度以下常常表现出混溶转变。当在混溶转变温度以上成像时,用荧光蛋白或脂质类似物标记的GPMVs在微米尺度上看起来是均匀的,而在该温度以下会分离成具有不同膜组成和物理性质的共存液相区域。分离得到的GPMVs中这种混溶转变的存在表明,在生长条件下完整质膜中会发生类似的相状异质性,尽管其长度尺度更小。在这种情况下,GPMVs提供了一个简单且可控的实验系统,用于探究药物和其他环境条件如何改变完整细胞膜中相状区域的组成和稳定性。本章描述了从贴壁哺乳动物细胞中生成和分离GPMVs以及使用荧光显微镜测定其混溶转变温度的方法。

相似文献

2
Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles.
PLoS One. 2015 Sep 14;10(9):e0137741. doi: 10.1371/journal.pone.0137741. eCollection 2015.
3
Elucidating membrane structure and protein behavior using giant plasma membrane vesicles.
Nat Protoc. 2012 May 3;7(6):1042-51. doi: 10.1038/nprot.2012.059.
4
Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.
J Phys Chem B. 2015 Mar 26;119(12):4450-9. doi: 10.1021/jp512839q. Epub 2015 Mar 18.
5
Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3165-70. doi: 10.1073/pnas.0611357104. Epub 2007 Feb 21.
6
Critical fluctuations in plasma membrane vesicles.
ACS Chem Biol. 2008 May 16;3(5):287-93. doi: 10.1021/cb800012x.
7
Diffusion of Single-Pass Transmembrane Receptors: From the Plasma Membrane into Giant Liposomes.
J Membr Biol. 2017 Aug;250(4):393-406. doi: 10.1007/s00232-016-9936-8. Epub 2016 Nov 8.
8
Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line.
Biophys J. 2017 Sep 19;113(6):1212-1222. doi: 10.1016/j.bpj.2017.04.052. Epub 2017 May 25.
9
Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
J Lipid Res. 2020 May;61(5):758-766. doi: 10.1194/jlr.RA119000565. Epub 2020 Jan 21.
10
n-Alcohol Length Governs Shift in L-L Mixing Temperatures in Synthetic and Cell-Derived Membranes.
Biophys J. 2017 Sep 19;113(6):1200-1211. doi: 10.1016/j.bpj.2017.06.066. Epub 2017 Aug 9.

引用本文的文献

1
Cholesterol promotes the formation of dimers and oligomers of the receptor tyrosine kinase ROR1.
bioRxiv. 2025 Jun 22:2025.06.19.660507. doi: 10.1101/2025.06.19.660507.
2
Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles.
ACS Nano. 2025 Mar 18;19(10):9760-9778. doi: 10.1021/acsnano.4c07503. Epub 2025 Mar 3.
3
Temperature dependence of membrane viscosity of ternary lipid GUV with L domains.
Biophys J. 2025 Mar 4;124(5):818-828. doi: 10.1016/j.bpj.2025.01.024. Epub 2025 Feb 3.
4
Migrasome formation is initiated preferentially in tubular junctions by membrane tension.
Biophys J. 2025 Feb 18;124(4):604-619. doi: 10.1016/j.bpj.2024.12.029. Epub 2025 Jan 3.
5
Intracellular pressure controls the propagation of tension in crumpled cell membranes.
Nat Commun. 2025 Jan 2;16(1):91. doi: 10.1038/s41467-024-55398-1.
6
Thrombomodulin (p.Cys537Stop) is released from cells by an unusual membrane insertion/leakage mechanism.
Blood Adv. 2024 Nov 12;8(21):5467-5478. doi: 10.1182/bloodadvances.2024013546.
8
Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid.
Biophys J. 2024 Aug 20;123(16):2406-2421. doi: 10.1016/j.bpj.2024.05.031. Epub 2024 May 31.
9
Ca1.3 channel clusters characterized by live-cell and isolated plasma membrane nanoscopy.
Commun Biol. 2024 May 23;7(1):620. doi: 10.1038/s42003-024-06313-3.
10
Cytotoxic rhamnolipid micelles drive acute virulence in .
Infect Immun. 2024 Mar 12;92(3):e0040723. doi: 10.1128/iai.00407-23. Epub 2024 Feb 23.

本文引用的文献

1
The Effect of Solutes on the Temperature of Miscibility Transitions in Multicomponent Membranes.
Biophys J. 2017 Oct 17;113(8):1814-1821. doi: 10.1016/j.bpj.2017.08.033.
2
n-Alcohol Length Governs Shift in L-L Mixing Temperatures in Synthetic and Cell-Derived Membranes.
Biophys J. 2017 Sep 19;113(6):1200-1211. doi: 10.1016/j.bpj.2017.06.066. Epub 2017 Aug 9.
3
Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line.
Biophys J. 2017 Sep 19;113(6):1212-1222. doi: 10.1016/j.bpj.2017.04.052. Epub 2017 May 25.
5
The Continuing Mystery of Lipid Rafts.
J Mol Biol. 2016 Dec 4;428(24 Pt A):4749-4764. doi: 10.1016/j.jmb.2016.08.022. Epub 2016 Aug 26.
6
Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia.
Biophys J. 2016 Aug 9;111(3):537-545. doi: 10.1016/j.bpj.2016.06.039.
7
Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order.
Biophys J. 2016 Apr 26;110(8):1800-1810. doi: 10.1016/j.bpj.2016.03.012.
8
Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.
Langmuir. 2016 Mar 29;32(12):2963-74. doi: 10.1021/acs.langmuir.5b03415. Epub 2016 Feb 17.
9
Membrane Transition Temperature Determines Cisplatin Response.
PLoS One. 2015 Oct 20;10(10):e0140925. doi: 10.1371/journal.pone.0140925. eCollection 2015.
10
Growth Conditions and Cell Cycle Phase Modulate Phase Transition Temperatures in RBL-2H3 Derived Plasma Membrane Vesicles.
PLoS One. 2015 Sep 14;10(9):e0137741. doi: 10.1371/journal.pone.0137741. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验