Suppr超能文献

用于评估低级别胶质瘤患者肿瘤进展的序贯表观扩散系数。

Sequential Apparent Diffusion Coefficient for Assessment of Tumor Progression in Patients with Low-Grade Glioma.

机构信息

From the Departments of Radiology (I.E.C., N.S., A.A., A.H.D., B.N.D., K.N.).

Pathology (N.M.T., M.M.H.).

出版信息

AJNR Am J Neuroradiol. 2018 Jun;39(6):1039-1046. doi: 10.3174/ajnr.A5639. Epub 2018 Apr 19.

Abstract

BACKGROUND AND PURPOSE

Early and accurate identification of tumor progression in patients with low-grade gliomas is challenging. We aimed to assess the role of quantitative ADC analysis in the sequential follow-up of patients with low-grade gliomas as a potential imaging marker of tumor stability or progression.

MATERIALS AND METHODS

In this retrospective study, patients with a diagnosis of low-grade glioma with at least 12 months of imaging follow-up were retrospectively reviewed. Two neuroradiologists independently reviewed sequential MR imaging in each patient to determine tumor progression using the Response Assessment in Neuro-Oncology criteria. Normalized mean ADC (ADC) and 10th percentile ADC (ADC) values from FLAIR hyperintense tumor volume were calculated for each MR image and compared between patients with stable disease versus tumor progression using univariate analysis. The interval change of ADC values between sequential scans was used to differentiate stable disease from progression using the Fisher exact test.

RESULTS

Twenty-eight of 69 patients who were evaluated met our inclusion criteria. Fifteen patients were classified as stable versus 13 patients as having progression based on consensus reads of MRIs and the Response Assessment in Neuro-Oncology criteria. The interval change of ADC values showed greater concordance with ultimate lesion disposition than quantitative ADC values at a single time point. The interval change in ADC matched the expected pattern in 12/13 patients with tumor progression (overall diagnostic accuracy of 86%, <.001). On average, the ADC interval change predicted progression 8 months before conventional MR imaging.

CONCLUSIONS

The interval change of ADC values can be used to identify progression versus stability of low-grade gliomas with a diagnostic accuracy of 86% and before apparent radiologic progression on conventional MR imaging.

摘要

背景与目的

早期、准确识别低级别脑胶质瘤患者的肿瘤进展极具挑战性。我们旨在评估 ADC 值定量分析在低级别脑胶质瘤患者连续随访中的作用,将其作为肿瘤稳定性或进展的潜在影像学标志物。

材料与方法

本回顾性研究纳入了至少 12 个月影像学随访的低级别脑胶质瘤患者。两位神经放射科医生独立对每位患者的连续 MRI 进行了复查,使用神经肿瘤学反应评估标准来确定肿瘤进展。对 FLAIR 高信号肿瘤体积进行标准化平均 ADC(ADC)和第 10 个百分位数 ADC(ADC)值的计算,并在疾病稳定与肿瘤进展的患者中进行单变量分析。采用 Fisher 确切检验,利用 ADC 值的间隔变化来区分疾病稳定与进展。

结果

共 69 例患者进行了评估,其中 28 例符合我们的纳入标准。根据 MRI 和神经肿瘤学反应评估标准的共识阅读,15 例患者被归类为稳定,13 例患者被归类为进展。ADC 值的间隔变化与最终病变处置的一致性优于单点定量 ADC 值。ADC 值的间隔变化与 13 例肿瘤进展患者中的预期模式相匹配(总体诊断准确性为 86%,<.001)。平均而言,ADC 值间隔变化可在常规 MRI 显示明显进展前 8 个月预测进展。

结论

ADC 值的间隔变化可用于识别低级别脑胶质瘤的进展与稳定,诊断准确性为 86%,且早于常规 MRI 上的明显放射学进展。

相似文献

引用本文的文献

本文引用的文献

2
'Low grade glioma': an update for radiologists.“低级别胶质瘤”:放射科医生的最新资讯
Br J Radiol. 2017 Feb;90(1070):20160600. doi: 10.1259/bjr.20160600. Epub 2016 Dec 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验