Suppr超能文献

不同运动速度模式对人类动作观察的影响:一项脑电图研究

Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study.

作者信息

Luo Tian-Jian, Lv Jitu, Chao Fei, Zhou Changle

机构信息

Fujian Provincal Key Lab of Brain-Inspired Computing, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, China.

出版信息

Front Neurosci. 2018 Apr 5;12:219. doi: 10.3389/fnins.2018.00219. eCollection 2018.

Abstract

Action observation (AO) generates event-related desynchronization (ERD) suppressions in the human brain by activating partial regions of the human mirror neuron system (hMNS). The activation of the hMNS response to AO remains controversial for several reasons. Therefore, this study investigated the activation of the hMNS response to a speed factor of AO by controlling the movement speed modes of a humanoid robot's arm movements. Since hMNS activation is reflected by ERD suppressions, electroencephalography (EEG) with BCI analysis methods for ERD suppressions were used as the recording and analysis modalities. Six healthy individuals were asked to participate in experiments comprising five different conditions. Four incremental-speed AO tasks and a motor imagery (MI) task involving imaging of the same movement were presented to the individuals. Occipital and sensorimotor regions were selected for BCI analyses. The experimental results showed that hMNS activation was higher in the occipital region but more robust in the sensorimotor region. Since the attended information impacts the activations of the hMNS during AO, the pattern of hMNS activations first rises and subsequently falls to a stable level during incremental-speed modes of AO. The discipline curves suggested that a moderate speed within a decent inter-stimulus interval (ISI) range produced the highest hMNS activations. Since a brain computer/machine interface (BCI) builds a path-way between human and computer/mahcine, the discipline curves will help to construct BCIs made by patterns of action observation (AO-BCI). Furthermore, a new method for constructing non-invasive brain machine brain interfaces (BMBIs) with moderate AO-BCI and motor imagery BCI (MI-BCI) was inspired by this paper.

摘要

动作观察(AO)通过激活人类镜像神经元系统(hMNS)的部分区域,在人脑中产生事件相关去同步化(ERD)抑制。由于多种原因,hMNS对AO反应的激活仍存在争议。因此,本研究通过控制类人机器人手臂运动的速度模式,研究了hMNS对AO速度因素反应的激活情况。由于hMNS激活通过ERD抑制反映出来,因此使用带有ERD抑制BCI分析方法的脑电图(EEG)作为记录和分析方式。六名健康个体被要求参与包含五种不同条件的实验。向个体呈现四个递增速度的AO任务和一个涉及相同运动成像的运动想象(MI)任务。选择枕叶和感觉运动区域进行BCI分析。实验结果表明,hMNS激活在枕叶区域较高,但在感觉运动区域更强烈。由于在AO过程中关注的信息会影响hMNS的激活,因此在AO递增速度模式下,hMNS激活模式先上升,随后下降至稳定水平。规律曲线表明,在合适的刺激间隔(ISI)范围内的中等速度产生最高的hMNS激活。由于脑机接口(BCI)在人与计算机/机器之间建立了一条路径,这些规律曲线将有助于构建基于动作观察模式的BCI(AO-BCI)。此外,本文启发了一种构建具有中等AO-BCI和运动想象BCI(MI-BCI)的非侵入性脑机接口(BMBI)的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f844/5895728/1e97d546c1b7/fnins-12-00219-g0001.jpg

相似文献

1
Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study.
Front Neurosci. 2018 Apr 5;12:219. doi: 10.3389/fnins.2018.00219. eCollection 2018.
2
3
A Novel Online Action Observation-Based Brain-Computer Interface That Enhances Event-Related Desynchronization.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:2605-2614. doi: 10.1109/TNSRE.2021.3133853. Epub 2021 Dec 21.
6
Performance of the Action Observation-Based Brain-Computer Interface in Stroke Patients and Gaze Metrics Analysis.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:1370-1379. doi: 10.1109/TNSRE.2024.3379995. Epub 2024 Mar 27.
7
Action Observation of Own Hand Movement Enhances Event-Related Desynchronization.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1407-1415. doi: 10.1109/TNSRE.2019.2919194. Epub 2019 May 27.
8
A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
Comput Biol Med. 2015 Nov 1;66:11-9. doi: 10.1016/j.compbiomed.2015.08.011. Epub 2015 Aug 24.
9
Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain-Computer Interface Action-Observation Games.
Cyberpsychol Behav Soc Netw. 2021 Aug;24(8):566-572. doi: 10.1089/cyber.2020.0231. Epub 2020 Dec 4.
10
Brain oscillatory signatures of motor tasks.
J Neurophysiol. 2015 Jun 1;113(10):3663-82. doi: 10.1152/jn.00467.2013. Epub 2015 Mar 25.

引用本文的文献

1
Virtual Electroencephalogram Acquisition: A Review on Electroencephalogram Generative Methods.
Sensors (Basel). 2025 May 18;25(10):3178. doi: 10.3390/s25103178.
3
Generative adversarial networks in EEG analysis: an overview.
J Neuroeng Rehabil. 2023 Apr 11;20(1):40. doi: 10.1186/s12984-023-01169-w.
4
Mu-desynchronization, N400 and corticospinal excitability during observation of natural and anatomically unnatural finger movements.
Front Hum Neurosci. 2022 Sep 2;16:973229. doi: 10.3389/fnhum.2022.973229. eCollection 2022.
5
EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss.
Front Neuroinform. 2020 Apr 30;14:15. doi: 10.3389/fninf.2020.00015. eCollection 2020.
6

本文引用的文献

1
Frontoparietal Activity Interacts With Task-Evoked Changes in Functional Connectivity.
Cereb Cortex. 2019 Feb 1;29(2):802-813. doi: 10.1093/cercor/bhy011.
2
Affective Stimuli for an Auditory P300 Brain-Computer Interface.
Front Neurosci. 2017 Sep 21;11:522. doi: 10.3389/fnins.2017.00522. eCollection 2017.
5
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
Front Neurosci. 2016 Jun 28;10:291. doi: 10.3389/fnins.2016.00291. eCollection 2016.
6
Probing the Human Brain Functional Connectome with Simultaneous EEG and fMRI.
Front Neurosci. 2016 Jun 27;10:302. doi: 10.3389/fnins.2016.00302. eCollection 2016.
8
Attention mechanisms during predictable and unpredictable threat - A steady-state visual evoked potential approach.
Neuroimage. 2016 Oct 1;139:167-175. doi: 10.1016/j.neuroimage.2016.06.026. Epub 2016 Jun 16.
9
Mu suppression - A good measure of the human mirror neuron system?
Cortex. 2016 Sep;82:290-310. doi: 10.1016/j.cortex.2016.03.019. Epub 2016 Apr 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验