Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, Egypt.
Biomedical Engineering Department, Technical Research Center, Cairo, Egypt.
J Neuroeng Rehabil. 2023 Apr 11;20(1):40. doi: 10.1186/s12984-023-01169-w.
Electroencephalogram (EEG) signals have been utilized in a variety of medical as well as engineering applications. However, one of the challenges associated with recording EEG data is the difficulty of recording large amounts of data. Consequently, data augmentation is a potential solution to overcome this challenge in which the objective is to increase the amount of data. Inspired by the success of Generative Adversarial Networks (GANs) in image processing applications, generating artificial EEG data from the limited recorded data using GANs has seen recent success. This article provides an overview of various techniques and approaches of GANs for augmenting EEG signals. We focus on the utility of GANs in different applications including Brain-Computer Interface (BCI) paradigms such as motor imagery and P300-based systems, in addition to emotion recognition, epileptic seizures detection and prediction, and various other applications. We address in this article how GANs have been used in each study, the impact of using GANs on the model performance, the limitations of each algorithm, and future possibilities for developing new algorithms. We emphasize the utility of GANs in augmenting the limited EEG data typically available in the studied applications.
脑电图 (EEG) 信号已被广泛应用于医学和工程领域。然而,记录 EEG 数据面临的挑战之一是难以记录大量数据。因此,数据扩充是解决这一挑战的一种潜在方法,其目的是增加数据量。受生成对抗网络 (GAN) 在图像处理应用中取得成功的启发,使用 GAN 从有限的记录数据中生成人工 EEG 数据已取得了近期的成功。本文概述了 GAN 用于扩充 EEG 信号的各种技术和方法。我们重点介绍了 GAN 在不同应用中的效用,包括脑机接口 (BCI) 范式,如运动想象和基于 P300 的系统,以及情绪识别、癫痫发作检测和预测,以及各种其他应用。本文讨论了 GAN 在每项研究中的使用方式、使用 GAN 对模型性能的影响、每种算法的局限性,以及开发新算法的未来可能性。我们强调了 GAN 在扩充研究应用中通常可用的有限 EEG 数据方面的效用。