Kiefer Laura M, Kubarych Kevin J
Department of Chemistry , University of Michigan , Ann Arbor , MI 48109 , USA . Email:
Chem Sci. 2017 Dec 21;9(6):1527-1533. doi: 10.1039/c7sc04533f. eCollection 2018 Feb 14.
In homogeneous photocatalytic reduction of CO, it is widely assumed that the primary electron transfer from the sacrificial donor to the catalyst is diffusion controlled, thus little attention has been paid to optimizing this step. We present spectroscopic evidence that the precursor complex is preformed, driven by preferential solvation, and two-dimensional infrared spectroscopy reveals triethanolamine (donor)/tetrahydrofuran (solvent) exchange in the photocatalyst's solvation shell, reaching greatest magnitude at the known optimal concentration (∼20% v/v TEOA in THF) for catalytically reducing CO to CO. Transient infrared absorption shows the appearance of the singly reduced catalyst on an ultrafast (<70 ps) time scale, consistent with non-diffusion controlled electron transfer within the preformed precursor complex. Identification of preferential catalyst-cosolvent interactions suggests a revised paradigm for the primary electron transfer, while illuminating the pivotal importance of solvent exchange in determining the overall efficiency of the photocycle.
在一氧化碳的均相光催化还原中,人们普遍认为从牺牲供体到催化剂的初级电子转移是受扩散控制的,因此很少有人关注优化这一步骤。我们提供了光谱证据,表明前驱体配合物是由优先溶剂化驱动而预先形成的,二维红外光谱揭示了光催化剂溶剂化壳层中三乙醇胺(供体)/四氢呋喃(溶剂)的交换,在将一氧化碳催化还原为一氧化碳的已知最佳浓度(四氢呋喃中约20% v/v的三乙醇胺)下达到最大程度。瞬态红外吸收显示在超快(<70皮秒)时间尺度上出现单还原催化剂,这与预先形成的前驱体配合物内非扩散控制的电子转移一致。对优先的催化剂 - 助溶剂相互作用的识别为初级电子转移提出了一个修订的范式,同时阐明了溶剂交换在决定光循环整体效率方面的关键重要性。