Department of Engineering Physics, Faculty of Engineering, Ankara University, Tandogan, 06100, Ankara, Turkey.
Phys Chem Chem Phys. 2018 May 3;20(17):12053-12060. doi: 10.1039/c8cp00994e.
The van der Waals (vdW) heterostructures are emerging as promising structures for future possible optoelectronic devices. Motivated by the recent studies on vdW heterostructures with their fascinating physical properties, we investigate the electronic and optical properties of boron phosphide/blue phosphorus heterostructures in the framework of density functional theory (DFT) and tight-binding (TB) approximations. We analyze the variation of the energy band gap, the characteristics of the energy band diagram, charge redistribution by stacking and the electrostatic potential along the perpendicular direction. The dynamical stability of these structures is ensured by the phonon spectra. We show that trilayer heterostructures of boron phosphide/bilayer blue phosphorus are in-direct band gap semiconductors while heterobilayers have a direct band gap at the K point. Moreover, we examine the optical properties of monolayer boron phosphide and heterostructures as part of DFT calculations. We conclude that the heterostructures have remarkable optical absorption over the UV range together with being transparent to the visible spectrum, and may be a prominent material for future optoelectronic devices.
范德华(vdW)异质结构作为未来可能的光电器件的有前途的结构而出现。受最近关于具有迷人物理性质的 vdW 异质结构的研究的启发,我们在密度泛函理论(DFT)和紧束缚(TB)近似的框架内研究了磷化硼/蓝磷异质结构的电子和光学性质。我们分析了能隙的变化、能带图的特征、堆叠引起的电荷重新分布以及沿垂直方向的静电势。这些结构的动力学稳定性通过声子谱得到保证。我们表明,三层磷化硼/双层蓝磷异质结构是间接带隙半导体,而异质双层在 K 点处具有直接带隙。此外,我们还作为 DFT 计算的一部分研究了单层磷化硼和异质结构的光学性质。我们得出的结论是,异质结构在 UV 范围内具有显著的光吸收,同时对可见光透明,可能是未来光电器件的一种突出材料。