Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China.
Adv Mater. 2018 Jun;30(23):e1800005. doi: 10.1002/adma.201800005. Epub 2018 Apr 20.
For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo O NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts.
对于许多再生电化学能量转换系统来说,由过渡金属(TM)氧化物和杂原子掺杂(例如,氮掺杂)碳质材料组成的混合电催化剂是有前途的双功能氧还原反应/氧析出反应电催化剂,其增强的电催化活性归因于源于 TM-N-C 活性位的协同效应。然而,当氮掺杂剂与氧化物中的 TM 键合时,哪种构型的氮掺杂剂(吡啶或吡咯 N)主要有助于协同效应,仍然不清楚。在此,描述了一种基于激光照射的创新策略,可控制地调节混合催化剂中吡啶和吡咯氮掺杂剂的相对浓度,即 NiCo O NPs/N 掺杂介孔石墨烯。比较研究表明,吡啶-NCo 键合而不是吡咯-N 键合在协同促进可逆氧电催化中起主要作用。此外,密度泛函理论计算提供了对相应协同机制的深刻见解。优化的混合体 NiCo/NLG-270 表现出优异的可逆氧电催化活性,导致高效双功能催化剂中最低值的过电位不同ΔE。在实际的可逆锌空气电池中,与贵金属电催化剂相比,NiCo/NLG-270 表现出优异的充放电性能和长期耐久性。