Mao Lujiao, Liu Jie, Lin Rong, Xue Jinhang, Yang Yuandong, Xu Shaojie, Li Qipeng, Qian Jinjie
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan, 657000, P. R. China.
Adv Sci (Weinh). 2024 Nov;11(42):e2402916. doi: 10.1002/advs.202402916. Epub 2024 Sep 3.
The electrochemical splitting of water for hydrogen production faces a major challenge due to its anodic oxygen evolution reaction (OER), necessitating research on the rational design and facile synthesis of OER catalysts to enhance catalytic activity and stability. This study proposes a ligand-induced MOF-on-MOF approach to fabricate various trimetallic MnFeCo-based Prussian blue analog (PBA) nanostructures. The addition of [Fe(CN)] transforms them from cuboids with protruding corners (MnFeCoPBA-I) to core-shell configurations (MnFeCoPBA-II), and finally to hollow structures (MnFeCoPBA-III). After pyrolysis at 800 °C, they are converted into corresponding PBA-derived carbon nanomaterials, featuring uniformly dispersed MnCoC nanoparticles. A comparative analysis demonstrates that the Fe addition enhances catalytic activity, while Mn-doped materials exhibit excellent stability. Specifically, the optimized MnFeCoNC-I-800 demonstrates outstanding OER performance in 1.0 m KOH solution, with an overpotential of 318 mV at 10 mA cm, maintaining stability for up to 150 h. Theoretical calculations elucidate synergistic interactions between Fe dopants and the MnCoC matrix, reducing barriers for oxygen intermediates and improving intrinsic OER activity. These findings offer valuable insights into the structure-morphology relationships of MOF precursors, advancing the development of highly active and stable MOF-derived OER catalysts for practical applications.
用于制氢的水电化学分解由于其阳极析氧反应(OER)面临重大挑战,因此有必要研究合理设计和简便合成OER催化剂以提高催化活性和稳定性。本研究提出了一种配体诱导的MOF-on-MOF方法来制备各种三金属MnFeCo基普鲁士蓝类似物(PBA)纳米结构。[Fe(CN)]的加入将它们从具有突出角的长方体(MnFeCoPBA-I)转变为核壳结构(MnFeCoPBA-II),最终转变为中空结构(MnFeCoPBA-III)。在800°C热解后,它们转变为相应的PBA衍生碳纳米材料,其特征是均匀分散的MnCoC纳米颗粒。对比分析表明,添加Fe可提高催化活性,而Mn掺杂材料表现出优异的稳定性。具体而言,优化后的MnFeCoNC-I-800在1.0 m KOH溶液中表现出出色的OER性能,在10 mA cm时过电位为318 mV,可保持长达150 h的稳定性。理论计算阐明了Fe掺杂剂与MnCoC基体之间的协同相互作用,降低了氧中间体的能垒并提高了本征OER活性。这些发现为MOF前驱体的结构-形态关系提供了有价值的见解,推动了用于实际应用的高活性和稳定的MOF衍生OER催化剂的开发。