Suppr超能文献

在小鼠胚胎干细胞中使用两个gRNA进行CRISPR/Cas9可提高双等位基因同源重组效率。

Use of two gRNAs for CRISPR/Cas9 improves bi-allelic homologous recombination efficiency in mouse embryonic stem cells.

作者信息

Acosta Sandra, Fiore Luciano, Carota Isabel Anna, Oliver Guillermo

机构信息

Center for Vascular & Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611.

出版信息

Genesis. 2018 May;56(5):e23212. doi: 10.1002/dvg.23212. Epub 2018 May 11.

Abstract

Targeted genome editing in mouse embryonic stem cells (ESCs) is a powerful resource to functionally characterize genes and regulatory elements. The use of the CRISPR/Cas9 genome editing approach has remarkably improved the time and efficiency of targeted recombination. However, the efficiency of this protocol is still far from ideal when aiming for bi-allelic homologous recombination, requiring at least two independent targeting recombination events. Here we describe an improved protocol that uses two gRNAs flanking the selected targeted region, leading to highly efficient homologous recombination in mouse ESCs. The bi-allelic recombination targeting efficiency is over 90% when using two gRNAs together with the inhibition of non-homologous end-joint repair. Moreover, this technique is compatible with the generation of knocked-in mice and the use of ESC-derived differentiation protocols, therefore facilitating and accelerating the gene targeting in mice and ESCs.

摘要

在小鼠胚胎干细胞(ESC)中进行靶向基因组编辑是从功能上表征基因和调控元件的强大资源。CRISPR/Cas9基因组编辑方法的使用显著提高了靶向重组的时间和效率。然而,当目标是双等位基因同源重组时,该方案的效率仍远不理想,这需要至少两个独立的靶向重组事件。在这里,我们描述了一种改进的方案,该方案使用位于选定靶向区域两侧的两个引导RNA(gRNA),从而在小鼠胚胎干细胞中实现高效同源重组。当使用两个gRNA并抑制非同源末端连接修复时,双等位基因重组靶向效率超过90%。此外,该技术与敲入小鼠的产生以及ESC衍生分化方案的使用兼容,因此便于并加速了小鼠和ESC中的基因靶向。

相似文献

2
Targeted Mutations in the Mouse via Embryonic Stem Cells.
Methods Mol Biol. 2020;2066:59-82. doi: 10.1007/978-1-4939-9837-1_5.
3
Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein.
Transgenic Res. 2017 Apr;26(2):263-277. doi: 10.1007/s11248-016-9998-5. Epub 2016 Nov 30.
4
CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci.
Nat Commun. 2019 Nov 29;10(1):5454. doi: 10.1038/s41467-019-13403-y.
5
Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
Genesis. 2020 Jan;58(1):e23340. doi: 10.1002/dvg.23340. Epub 2019 Sep 30.
7
CRISPR-Cas9-Guided Genome Engineering in Caenorhabditis elegans.
Curr Protoc Mol Biol. 2019 Dec;129(1):e106. doi: 10.1002/cpmb.106.
8
Generating Genetically Modified Mice: A Decision Guide.
Methods Mol Biol. 2017;1642:1-19. doi: 10.1007/978-1-4939-7169-5_1.
9
Genome Editing: CRISPR-Cas9.
Methods Mol Biol. 2018;1775:119-132. doi: 10.1007/978-1-4939-7804-5_11.
10
Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region.
Biotechnol Bioeng. 2020 Sep;117(9):2816-2826. doi: 10.1002/bit.27441. Epub 2020 Jun 17.

引用本文的文献

1
2
Analysis of the genome-editing activity of microinjected CRISPR/Cas9 ribonucleoprotein complexes in .
MicroPubl Biol. 2024 Oct 30;2024. doi: 10.17912/micropub.biology.001310. eCollection 2024.
3
CRISPR-based functional genomics for schistosomes and related flatworms.
Trends Parasitol. 2024 Nov;40(11):1016-1028. doi: 10.1016/j.pt.2024.09.010. Epub 2024 Oct 18.
4
PCR-Based Strategy for Introducing CRISPR/Cas9 Machinery into Hematopoietic Cell Lines.
Cancers (Basel). 2023 Aug 25;15(17):4263. doi: 10.3390/cancers15174263.
5
Targeted insertion and reporter transgene activity at a gene safe harbor of the human blood fluke, .
Cell Rep Methods. 2023 Jul 24;3(7):100535. doi: 10.1016/j.crmeth.2023.100535.
6
The CRISPR/Cas System in Human Cancer.
Adv Exp Med Biol. 2023;1429:59-71. doi: 10.1007/978-3-031-33325-5_4.
7
Editing using the CRISPR-Cas9 system.
Synth Biol (Oxf). 2022 Dec 6;7(1):ysac031. doi: 10.1093/synbio/ysac031. eCollection 2022.
10
Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene alleles.
PLoS One. 2022 Jun 7;17(6):e0269342. doi: 10.1371/journal.pone.0269342. eCollection 2022.

本文引用的文献

1
Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.
Nucleic Acids Res. 2017 May 19;45(9):5198-5207. doi: 10.1093/nar/gkx130.
2
Human tissues in a dish: The research and ethical implications of organoid technology.
Science. 2017 Jan 20;355(6322). doi: 10.1126/science.aaf9414.
3
Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.
J Biotechnol. 2017 Jan 10;241:136-146. doi: 10.1016/j.jbiotec.2016.11.011. Epub 2016 Nov 11.
4
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.
5
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection.
J Biotechnol. 2015 Aug 20;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024. Epub 2015 May 21.
6
High-throughput functional genomics using CRISPR-Cas9.
Nat Rev Genet. 2015 May;16(5):299-311. doi: 10.1038/nrg3899. Epub 2015 Apr 9.
7
8
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
Nat Biotechnol. 2015 May;33(5):538-42. doi: 10.1038/nbt.3190. Epub 2015 Mar 23.
10
Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice.
Cell Rep. 2015 Feb 10;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub 2015 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验