School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
Laboratory of Anatomy and Morphology, V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St Petersburg, 197376, Russia.
New Phytol. 2018 Jul;219(1):66-76. doi: 10.1111/nph.15173. Epub 2018 Apr 20.
Diffusion of CO from the leaf intercellular air space to the site of carboxylation (g ) is a potential trait for increasing net rates of CO assimilation (A ), photosynthetic efficiency, and crop productivity. Leaf anatomy plays a key role in this process; however, there are few investigations into how cell wall properties impact g and A . Online carbon isotope discrimination was used to determine g and A in Oryza sativa wild-type (WT) plants and mutants with disruptions in cell wall mixed-linkage glucan (MLG) production (CslF6 knockouts) under high- and low-light growth conditions. Cell wall thickness (T ), surface area of chloroplast exposed to intercellular air spaces (S ), leaf dry mass per area (LMA), effective porosity, and other leaf anatomical traits were also analyzed. The g of CslF6 mutants decreased by 83% relative to the WT, with c. 28% of the reduction in g explained by S . Although A /LMA and A /Chl partially explained differences in A between genotypes, the change in cell wall properties influenced the diffusivity and availability of CO . The data presented here indicate that the loss of MLG in CslF6 plants had an impact on g and demonstrate the importance of cell wall effective porosity and liquid path length on g .
CO 从叶片细胞间隙空气空间扩散到羧化部位(g)是提高 CO 同化率(A)、光合效率和作物生产力的潜在特性。叶片解剖结构在这个过程中起着关键作用;然而,很少有研究探讨细胞壁特性如何影响 g 和 A。在线碳同位素分馏用于确定 Oryza sativa 野生型(WT)植物和细胞壁混合连接葡聚糖(MLG)生产中断(CslF6 敲除)突变体在高光和低光生长条件下的 g 和 A。还分析了细胞壁厚度(T)、暴露于细胞间隙空气空间的叶绿体表面积(S)、每单位面积叶片干质量(LMA)、有效孔隙率和其他叶片解剖结构特征。CslF6 突变体的 g 相对于 WT 降低了 83%,其中 S 解释了 g 减少的约 28%。尽管 A/LMA 和 A/Chl 部分解释了基因型间 A 的差异,但细胞壁特性的变化影响了 CO 的扩散性和可用性。这里呈现的数据表明,CslF6 植物中 MLG 的丧失对 g 有影响,并证明细胞壁有效孔隙率和液体路径长度对 g 的重要性。