Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
New Phytol. 2021 Dec;232(6):2324-2338. doi: 10.1111/nph.17730. Epub 2021 Sep 30.
Mesophyll conductance g determines CO diffusion rates from mesophyll intercellular air spaces to the chloroplasts and is an important factor limiting photosynthesis. Increasing g in cultivated plants is a potential strategy to increase photosynthesis and intrinsic water use efficiency (WUE ). The anatomy of the leaf and metabolic factors such as aquaporins and carbonic anhydrases have been identified as important determinants of g . However, genes involved in the regulation and modulation of g remain largely unknown. In this work, we investigated the role of heterotrimeric G proteins in g and drought tolerance in rice d1 mutants, which harbor a null mutation in the Gα subunit gene, RGA1. d1 mutants in both cv Nipponbare and cv Taichung 65 exhibited increased g , fostering improvement in photosynthesis, WUE , and drought tolerance compared with wild-type. The increased surface area of mesophyll cells and chloroplasts exposed to intercellular airspaces and the reduced cell wall and chloroplast thickness in the d1 mutant are evident contributors to the increase in g . Our results indicate that manipulation of heterotrimeric G protein signaling has the potential to improve crop WUE and productivity under drought.
质膜导度 g 决定了 CO2 从叶肉细胞间隙扩散到叶绿体的速率,是限制光合作用的一个重要因素。提高栽培植物的 g 是提高光合作用和内在水分利用效率(WUE)的一种潜在策略。叶片解剖结构和水通道蛋白、碳酸酐酶等代谢因素已被确定为 g 的重要决定因素。然而,参与 g 调节和调制的基因在很大程度上仍然未知。在这项工作中,我们研究了异三聚体 G 蛋白在水稻 d1 突变体中的作用,d1 突变体在 cv Nipponbare 和 cv Taichung 65 中都携带有 Gα亚基基因 RGA1 的无效突变。与野生型相比,d1 突变体的 g 增加,促进了光合作用、WUE 和耐旱性的提高。质膜导度 g 的增加是由于叶肉细胞和叶绿体暴露于细胞间隙的表面积增加,以及细胞壁和叶绿体厚度减少。我们的结果表明,操纵异三聚体 G 蛋白信号有可能在干旱条件下提高作物的 WUE 和生产力。