Suppr超能文献

从人类临床试验中去识别化数据的数据共享平台。

Data sharing platforms for de-identified data from human clinical trials.

机构信息

1 National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

2 The Emmes Corporation, Rockville, MD, USA.

出版信息

Clin Trials. 2018 Aug;15(4):413-423. doi: 10.1177/1740774518769655. Epub 2018 Apr 20.

Abstract

Data sharing of de-identified individual participant data is being adopted by an increasing number of sponsors of human clinical trials. In addition to standardizing data syntax for shared trial data, semantic integration of various data elements is the focus of several initiatives that define research common data elements. This perspective article, in the first part, compares several data sharing platforms for de-identified clinical research data in terms of their size, policies and supported features. In the second part, we use a case study approach to describe in greater detail one data sharing platform (Data Share from National Institute of Drug Abuse). We present data on the past use of the platform, data formats offered, data de-identification approaches and its use of research common data elements. We conclude with a summary of current and expected future trends that facilitate secondary research use of data from completed human clinical trials.

摘要

越来越多的人体临床试验赞助商开始采用去识别个体参与者数据的数据共享。除了为共享试验数据标准化数据语法外,对各种数据元素的语义集成也是定义研究通用数据元素的几个举措的重点。本文首先从规模、政策和支持的功能方面比较了几个用于去识别临床研究数据的数据共享平台。在第二部分中,我们采用案例研究方法更详细地描述了一个数据共享平台(国家药物滥用研究所的数据共享)。我们提供了有关该平台过去使用情况、提供的数据格式、数据去识别方法及其对研究通用数据元素的使用情况的数据。最后,我们总结了当前和预期的未来趋势,这些趋势有助于对已完成的人体临床试验数据进行二次研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验