Stöcker Bianca K, Köster Johannes, Zamir Eli, Rahmann Sven
Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
Integr Biol (Camb). 2018 May 21;10(5):290-305. doi: 10.1039/c8ib00012c.
Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of these systems emerge not only from the protein interactions themselves but also from the dependencies between these interactions, as generated by allosteric effects or mutual exclusion due to steric hindrance. Therefore, formal models for integrating and utilizing information about interaction dependencies are of high interest. Here, we describe an approach for endowing protein networks with interaction dependencies using propositional logic, thereby obtaining constrained protein interaction networks ("constrained networks"). The construction of these networks is based on public interaction databases as well as text-mined information about interaction dependencies. We present an efficient data structure and algorithm to simulate protein complex formation in constrained networks. The efficiency of the model allows fast simulation and facilitates the analysis of many proteins in large networks. In addition, this approach enables the simulation of perturbation effects, such as knockout of single or multiple proteins and changes of protein concentrations. We illustrate how our model can be used to analyze a constrained human adhesome protein network, which is responsible for the formation of diverse and dynamic cell-matrix adhesion sites. By comparing protein complex formation under known interaction dependencies versus without dependencies, we investigate how these dependencies shape the resulting repertoire of protein complexes. Furthermore, our model enables investigating how the interplay of network topology with interaction dependencies influences the propagation of perturbation effects across a large biochemical system. Our simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is available under the MIT license at http://github.com/BiancaStoecker/cpinsim and as a Bioconda package (https://bioconda.github.io).
蛋白质相互作用是细胞功能背后生化反应系统的基本组成部分。这些系统的复杂性和功能性不仅源于蛋白质相互作用本身,还源于这些相互作用之间的依赖性,这种依赖性由变构效应或空间位阻导致的相互排斥所产生。因此,用于整合和利用相互作用依赖性信息的形式模型备受关注。在这里,我们描述了一种使用命题逻辑赋予蛋白质网络相互作用依赖性的方法,从而获得受约束的蛋白质相互作用网络(“受约束网络”)。这些网络的构建基于公共相互作用数据库以及关于相互作用依赖性的文本挖掘信息。我们提出了一种高效的数据结构和算法来模拟受约束网络中的蛋白质复合物形成。该模型的效率允许快速模拟,并有助于分析大型网络中的许多蛋白质。此外,这种方法能够模拟扰动效应,例如单个或多个蛋白质的敲除以及蛋白质浓度的变化。我们说明了如何使用我们的模型来分析一个受约束的人类黏附素蛋白质网络,该网络负责形成多样且动态的细胞 - 基质黏附位点。通过比较在已知相互作用依赖性与无依赖性情况下的蛋白质复合物形成,我们研究了这些依赖性如何塑造最终的蛋白质复合物库。此外,我们的模型能够研究网络拓扑与相互作用依赖性之间的相互作用如何影响扰动效应在大型生化系统中的传播。我们的模拟软件CPINSim(用于受约束蛋白质相互作用网络模拟器)可在http://github.com/BiancaStoecker/cpinsim以MIT许可获取,并作为Bioconda包(https://bioconda.github.io)提供。