1 Astrobiology Program, Department of Earth and Space Sciences, University of Washington , Seattle, Washington.
2 Virtual Planetary Laboratory, University of Washington , Seattle, Washington.
Astrobiology. 2018 Jun;18(6):709-738. doi: 10.1089/ast.2017.1737. Epub 2018 Apr 20.
Finding life on exoplanets from telescopic observations is an ultimate goal of exoplanet science. Life produces gases and other substances, such as pigments, which can have distinct spectral or photometric signatures. Whether or not life is found with future data must be expressed with probabilities, requiring a framework of biosignature assessment. We present a framework in which we advocate using biogeochemical "Exo-Earth System" models to simulate potential biosignatures in spectra or photometry. Given actual observations, simulations are used to find the Bayesian likelihoods of those data occurring for scenarios with and without life. The latter includes "false positives" wherein abiotic sources mimic biosignatures. Prior knowledge of factors influencing planetary inhabitation, including previous observations, is combined with the likelihoods to give the Bayesian posterior probability of life existing on a given exoplanet. Four components of observation and analysis are necessary. (1) Characterization of stellar (e.g., age and spectrum) and exoplanetary system properties, including "external" exoplanet parameters (e.g., mass and radius), to determine an exoplanet's suitability for life. (2) Characterization of "internal" exoplanet parameters (e.g., climate) to evaluate habitability. (3) Assessment of potential biosignatures within the environmental context (components 1-2), including corroborating evidence. (4) Exclusion of false positives. We propose that resulting posterior Bayesian probabilities of life's existence map to five confidence levels, ranging from "very likely" (90-100%) to "very unlikely" (<10%) inhabited. Key Words: Bayesian statistics-Biosignatures-Drake equation-Exoplanets-Habitability-Planetary science. Astrobiology 18, 709-738.
从望远镜观测中寻找系外行星上的生命是系外行星科学的最终目标。生命会产生气体和其他物质,例如色素,这些物质可能具有独特的光谱或光度特征。未来的数据是否能发现生命,必须用概率来表示,这就需要建立一个生物特征评估框架。我们提出了一个框架,主张使用生物地球化学的“系外地球系统”模型来模拟光谱或光度学中潜在的生物特征。给定实际观测结果,我们可以使用模拟来找到有生命和无生命场景下数据出现的贝叶斯似然率。后者包括了生物特征的“假阳性”,即无生命的来源模拟了生物特征。包括先前观测在内的影响行星居住的因素的先验知识与可能性相结合,给出了给定系外行星上存在生命的贝叶斯后验概率。观测和分析有四个必要的组成部分。(1)恒星(例如年龄和光谱)和系外行星系统特性的特征化,包括“外部”系外行星参数(例如质量和半径),以确定系外行星的宜居性。(2)“内部”系外行星参数(例如气候)的特征化,以评估可居住性。(3)在环境背景下评估潜在的生物特征(包括第 1-2 部分),包括佐证证据。(4)排除假阳性。我们建议,生命存在的后验贝叶斯概率映射到五个置信水平,范围从“极有可能”(90-100%)到“极不可能”(<10%)居住。关键词:贝叶斯统计-生物特征-德雷克方程-系外行星-可居住性-行星科学。天体生物学 18, 709-738。